A HUREWICZ-TYPE THEOREM FOR APPROXIMATE FIBRATIONS

D. S. CORAM AND P. F. DUVALL, JR. 1

ABSTRACT. This paper concerns conditions on point inverses which insure that a mapping between locally compact, separable, metric ANR's is an approximate fibration. Roughly a mapping is said to be π_i -movable [respectively, H_i -movable] provided that nearby fibers include isomorphically into mutual neighborhoods on π_i [resp. H_i]. An earlier result along this line is that π_i -movability for all i implies that a mapping is an approximate fibration. The main result here is that for a UV^1 mapping, π_i -movability for i < k - 1 plus H_k - and H_{k+1} -movability imply π_k -movability of the mapping. Hence a UV^1 mapping which is H_i -movable for all i is an approximate fibration. Also, if a UV^1 mapping is π_i -movable for i < k and k is at least as large as the fundamental dimension of any point inverse, then it is an approximate fibration. Finally, a UV^1 mapping $f: M^m \to N^n$ between manifolds is an approximate fibration provided that f is π_i -movable for all $i < \max\{m - n, \frac{1}{2}(m-1)\}$.

1. Introduction and statement of results. Given a proper surjective mapping $p: E \to B$ between locally compact, separable ANR's, we are interested in conditions on the point inverses which insure that p is an approximate fibration (definition below). Earlier results in this direction involve "UV" conditions on point inverses. The mapping $p: E \to B$ is said to be a k-uv [resp., k-UV] mapping provided that p is proper and surjective and for every p in p and every neighborhood p of $p^{-1}(p)$, there is a neighborhood p of p of p in p such that the inclusion induced map p is a neighborhood p of p in p in p such that the inclusion induced map p in p is zero [for each base point p in p

THEOREM A. Let $p: E \to B$ be a mapping between locally compact separable ANR's. If p is UV^1 , π_i -movable for $i \le k-1$, and H_k - and H_{k+1} -movable where $k \ge 2$, then p is π_k -movable.

Received by the editors December 12, 1978 and, in revised form, March 20, 1979.

AMS (MOS) subject classifications (1970). Primary 54C10; Secondary 54C55, 55C15, 55F65, 57A15. Key words and phrases. Approximate fibration, UV property.

¹Research of both authors supported by N.S.F. contract.

As an application, we give the following improvement of [CD2, Theorem 3.7] for UV^1 -mappings, and a result on mappings between manifolds which generalizes [L, Theorem 5.4].

THEOREM B. If $p: E \to B$ is a UV^1 , π_i -movable map for $i \le k$ and each fiber of p has fundamental dimension $\le k$, then f is an approximate fibration.

THEOREM C. Let $f: M^m \to N^n$ be a UV^1 mapping between manifolds. If f is π_i -movable for all $i \le k-1$ where $k \ge \max\{m-n+1, (m+1)/2\}$, then f is an approximate fibration.

We use the following terminology and notation in this paper. If $p: E \to B$ is a mapping, $b \in B$ or $U \subset B$, then the fiber $p^{-1}(b)$ is denoted by F_b and $p^{-1}(U)$ is denoted by \tilde{U} . Our usual homology and cohomology groups are singular, with integral coefficient groups. If λ is one of the usual homology, (cohomology) or homotopy functors, then $\check{\lambda}(X)$ denotes the inverse (direct) limit of $\lambda(U)$ as U ranges over the neighborhoods of X. An absolute neighborhood retract for metric spaces is abbreviated to ANR. A manifold is assumed to be connected and boundaryless.

2. Movability and lifting properties. Suppose that $p: E \to B$ is a proper surjective map. We say that p has the approximate homotopy lifting property (AHLP) for a space X if for each commutative diagram

$$\begin{array}{cccc} X \times \{0\} & \stackrel{g}{\rightarrow} & E \\ & \cap & & \downarrow p \\ X \times I & \stackrel{\rightarrow}{\rightarrow} & B \end{array}$$

and open cover α of B, there is an extension $G: X \times I \to E$ of g such that $p \circ G$ is α -close to H. We say that such a G is an α -lift of H. If p has the AHLP for all spaces X, p is an approximate fibration.

In [CD2], it was shown that the AHLP for polyhedra can be detected by a homotopy regularity condition on fibers, which we called k-movability. In this paper, it will be convenient to define movability in a slightly more general setting.

Let Λ_0 be the collection of functors $\{\pi_i, H_j | i, j = 0, 1, 2, \dots\}$. If $\Lambda \subset \Lambda_0$, we say that p is Λ -movable provided that given $b \in B$ and any neighborhood U_0 of F_b , there exist open sets U and V with $F_b \subset V \subset U \subset U_0$ such that for each $F_c \subset V$, each $\lambda \in \Lambda$ (and each base point in F_c if relevant), the inclusion induced map sends $\check{\Lambda}(F_c)$ isomorphically onto the image of $\lambda(V)$ in $\lambda(U)$. Given such U, V, we say that $\check{\Lambda}(F_c)$ is realized as the image of $\lambda(V)$ in $\lambda(U)$.

Thus our earlier terminology, k-movable, is replaced in this paper by Λ -movable where $\Lambda = \{\pi_i | i \leq k\}$. Subject to this change the result from [CD2, Theorem 3.3] says that if E and B are ANR's and f is Λ -movable for $\Lambda = \{\pi_i | i \leq k\}$, then f has the AHLP for polyhedra of dimension $\leq k$.

We will need the following technical lemma.

LEMMA 2.1. Let Λ_1 and Λ_2 be subsets of Λ_0 . If $p: E \to B$ is Λ_1 -movable and Λ_2 -movable, then p is $(\Lambda_1 \cup \Lambda_2)$ -movable. Furthermore, if B is a manifold, the open sets U and V may be chosen to be preimages of contractible sets.

PROOF. Given $b \in B$ and $U_0 \supset F_b$, choose open sets U_1 , V_1 , U_2 , V_2 , U_3 , V_3 with $F_b \subset V_3 \subset U_3 \subset V_2 \subset U_2 \subset V_1 \subset U_1 \subset U_0$ such that for every $F_c \subset V_3$, $\lambda \in \Lambda_1$, $\check{\lambda}(F_c)$ is realized as the image of $\lambda(V_3)$ in $\lambda(U_3)$ and as the image of $\lambda(V_1)$ in $\lambda(U_1)$ and such that $\check{\mu}(F_c)$ is realized as the image of $\mu(V_2)$ in $\mu(U_2)$ for every $\mu \in \Lambda_2$. It is easy to check that if $U = U_2$ and $V = V_3$, $\check{\lambda}(F_c)$ is realized as the image of $\lambda(V)$ in $\lambda(U)$ for each $\lambda \in \Lambda_1 \cup \Lambda_2$.

For the second conclusion, given $b \in B$ and $U_0 \supset F_b$ choose open sets $V \subset V_2 \subset U_2 \subset U \subset V_1 \subset U_1$ such that $F_b \subset V$, $U_1 \subset U_0$, $\check{\lambda}(F_c)$ is realized as the image of $\lambda(V_i)$ in $\lambda(U_i)$ for each $F_c \subset V_i$ (i = 1, 2), and U and V are preimages of contractible sets.

In the next section, it will be convenient to assume that E and B are Q-manifolds. A natural device is to replace p by the map $p \times 1_Q$: $E \times Q \rightarrow B \times Q$ and appeal to Edwards' Theorem [E]. The reader can easily provide a proof for the following lemma.

LEMMA 2.2. If $p: E \to B$ is a proper map between ANR's, then for each of the properties P_i below, p has P_i if and only if $p \times 1_O$ has P_i .

P₁: Being an approximate fibration.

 P_2 : Being λ -movable for some $\lambda \in \Lambda_0$.

 P_3 : Having the AHLP for a space X.

LEMMA 2.3. Suppose that $p: E \to B$ is a map between ANR's and that p has the AHLP for polyhedra of dimension $\leq q$. If $V \subset U$ is a pair of open sets in Y, then $p_*: \pi_i(\tilde{U}, \tilde{V}) \to \pi_i(U, V)$ is an isomorphism for $i \leq q$ and is epic for i = q + 1.

The proof is a variation of a standard argument; see for example [S, Theorem 7.2.8], [L1, Corollary 2.4] and [L2, Lemma 1.2]. It uses [CD2, Lemma 1.2].

3. Proof of Theorem A. By Lemma 2.1 we may assume that both E and B are Q-manifolds. Thus, each point in B has arbitrarily small contractible open neighborhoods.

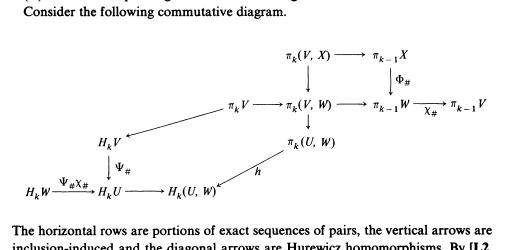
Let us say that p has property i-DUV provided that for each $b \in B$ and each neighborhood U_0 of F_b , there are neighborhoods $V \subset U$ of F_b in U_0 such that given any fiber F_c in V and any neighborhood W_0 of F_c in V, there are neighborhoods $X \subset W$ of F_c in W_0 such that the inclusion induced map $v_\#: \pi_i(V, X) \to \pi_i(U, W)$ is the zero homomorphism for each base point. By Lemma 3.1 of [CD2], p has property i-DUV for $i \leq k-1$. We wish to prove k-DUV and (k+1)-DUV.

Given $b \in B$ and a neighborhood U_0 of F_b , apply the hypotheses and Lemma 2.1 to choose $V \subset U$ satisfying the following properties.

- (i) $\check{\pi}_{k-1}F_c$ is realized as the image of $\pi_{k-1}V$ in $\pi_{k-1}U$ for each $F_c\subset V$,
- (ii) $\check{H}_i F_c$ is realized as the image of $H_i V$ in $H_i U$ for each $F_c \subset V$ and i = k, k + 1, and

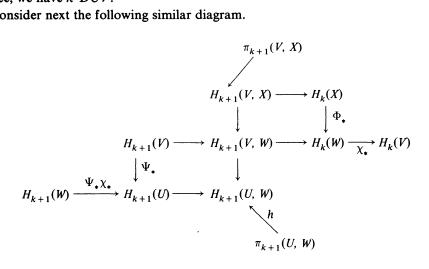
- (iii) U and V are the preimages of contractible neighborhoods of b. Given a fiber $F_c \subset V$ and a neighborhood W_0 of F_c in V, apply the hypotheses and the above lemmas again to choose $X \subset W$ satisfying the following properties:
 - (iv) $\check{\pi}_{k-1}F_c$ is realized as the image of $\pi_{k-1}X$ in $\pi_{k-1}U$,
 - (v) $H_i F_c$ is realized as the image $H_i X$ in $H_i W$, for i = k, k + 1, and
 - (vi) X and W are preimages of contractible neighborhoods of b.

Consider the following commutative diagram.



The horizontal rows are portions of exact sequences of pairs, the vertical arrows are inclusion-induced and the diagonal arrows are Hurewicz homomorphisms. By [L2, Lemma 5.1], (iii), and (vi), U and W are simply connected. Also by (iii) and (vi) and Lemma 2.3, $\pi_i(U, W) = 0$ for $i \le k - 1$. Thus, by [S, p. 397] h is an isomorphism. By (i) and (iv) $\chi_{\#}|\text{im }\Phi_{\#}$ is monic, and by (ii) and (v) im $\Psi_{*}\chi_{*}=$ im Ψ_{\star} . It is now an easy "diagram chasing" argument to show that $\nu_{\#}$ is zero and, hence, we have k-DUV.

Consider next the following similar diagram.



Since the proof of Theorem 3.3 of [CD2] really uses only i-DUV (rather than *i*-movability as stated), we see that p has AHLP for I^i , $i \le i \le k$. As above this implies that $\pi_k(U, W) = 0$ and h is an isomorphism. Also $\chi_* | \text{im } \Phi_*$ is monic and im $\Psi_* = \text{im } \Psi_* \chi_*$ again. Hence $\nu_{\#}$ is zero and (k + 1)-DUV results.

We now apply Theorem 3.3 of [CD2] again to see that p has AHLP for I^i , $i \le k + 1$. Hence p is a π_k -movable map by Proposition 3.5 of [CD2], so the proof is finished.

COROLLARY. Let $p: E \to B$ be a mapping between locally compact, separable metric ANR's. If p is UV^1 and H_i -movable for all i, then p is an approximate fibration.

When Theorem A is compared to Lacher's Hurewicz-type theorem for UV properties [L2, Theorem 4.2], a discrepancy in the analogy is noticeable. There is no hypothesis in Lacher's theorem coresponding to the H_{k+1} -movable hypothesis in Theorem A. The reason for this difference is explained in the remark on page 51 of [CD2]. The extra hypothesis is necessary as the following example shows.

Let $f: S^3 \to S^2$ be the Hopf fibration (a generator of $\pi_3(S^2) \cong Z$), and let K be the complex obtained by attaching a 4-cell to the mapping cylinder M_f along S^3 by the identity. It follows that

$$\tilde{H}_i(K) \cong 0, \quad i \leq 1,$$
 $H_2(K) \cong Z \cong \pi_2(K),$
 $H_3(K) \cong 0 \cong \pi_3(K), \text{ and }$
 $H_A(K) \cong Z.$

Let $\alpha: S^2 \to K$ be a generator of $\pi_2(K)$ and let $M_\alpha = (S^2 \times I \cup K)/\{(x, 1) = f(x)\}$ be the mapping cylinder of α . Define $p: M_\alpha \to I$ by a p[(x, t)] = t, p(K) = 1. Then p is a π_2 -movable map which is H_3 -movable and 1-UV, but p is not π_3 -movable, since $\pi_3(K) = 0$, $\pi_3(S^2) \neq 0$. Thus we cannot remove the assumption that p be H_{k+1} -movable in Theorem A.

4. Proofs of the applications.

PROOF OF THEOREM B. Since $Fd(F_b) \le k$, $\check{H}^i(F_b) \cong 0$ for $i \ge k+1$ and each $b \in B$. It follows from [L2, Theorem 3.1] that p is an i-uv(Z) map for $i \ge k+1$. Hence p is H_i -movable for $i \ge k+1$. By Theorem A, p is π_i -movable for all i, so p is an approximate fibration by [CD2, Corollary 3.4].

LEMMA 4.1. If $f: M^m \to N^n$ is a UV^1 , $\{\pi_i | i \le k-1\}$ -movable mapping between manifolds, then for each $y \in N$, $\check{H}^j(F_v) = 0$ for $j \ge \max\{m-k+1, m-n+1\}$.

PROOF. For n=0, 1, the result is contained in [LM, Theorem 1.3]. For $n \ge 2$, take $y \in N$ and $j \ge \max\{m-k+1, m-n+1\}$. If U is a Euclidean neighborhood of y, then U is simply connected and $\pi_{m-j}(U, U-y)=0$. By Lemma 2.3, $\pi_{m-j}(\tilde{U}, \tilde{U}-F_y)=0$. The relative Hurewicz theorem [S, p. 397] yields $H_{m-j}(\tilde{U}, \tilde{U}-F_y)=0$. Since U is simply connected and f is UV^1 , \tilde{U} is simply connected [L2, Lemma 5.1] and thus orientable [S, p. 294]. Therefore duality [S, p. 296] can be applied to give $\check{H}^j(F_y)=0$.

PROOF OF THEOREM C. Let $y \in N$. By the above lemma $\check{H}^j(F_y) = 0$ for all $j > \max\{m-k+1, m-n+1\}$. Since k > m-n+1 and k > (m+1)/2, $\max\{m-k+1, m-n+1\} \le k$. Hence $\check{H}^j(F_y) = 0$ for all j > k. By [L, Theorem 3.1], f is a j-uv map for all j > k; and by Theorem A, f is $\{\pi_i\}_{i=1}^{\infty}$ -movable. Hence f is an approximate fibration [CD2, Corollary 3.4].

REFERENCES

- [CD1] D. Coram and P. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275-288.
- [CD2] _____, Approximate fibrations and a movabilitity condition for maps, Pacific J. Math. 72 (1977), 41-56.
 - [E] R. D. Edwards, A locally compact ANR is a Hilbert cube manifold factor (to appear).
 - [L1] R. C. Lacher, Cell-like mappings. I, Pacific J. Math. 30 (1969), 717-731.
 - [L2] R. C. Lacher, Cellularity criteria for maps, Michigan Math. J. 17 (1970), 385-396.
- [LM] R. C. Lacher and D. R. McMillan, Partially acyclic mappings between manifolds, Amer. J. Math. 94 (1972), 246-266.
 - [S] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

DEPARTMENT OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLAHOMA 74074