PROOF OF A THEOREM OF BURKE AND HODEL ON THE CARDINALITY OF TOPOLOGICAL SPACES¹

ROBERT L. BLAIR

ABSTRACT. Techniques of Pol are used to give a direct proof of Burke and Hodel's inequality $|X| < 2^{\Delta(X) \cdot psw(X)}$, where $\Delta(X)$ is the discreteness character of the T_1 space X and psw(X) is the point separating weight of X.

A cover \mathcal{G} of a topological space X is separating if for each $x, y \in X$ with $x \neq y$ there is $G \in \mathcal{G}$ with $x \in G$ and $y \notin G$. For a T_1 space X the point separating weight psw(X) of X is $\omega \cdot n$, where n is the smallest cardinal such that X has a separating open cover \mathcal{G} with $ord(x, \mathcal{G}) \leq n$ for all $x \in X$, and the discreteness character $\Delta(X)$ of X is $\omega \cdot n$, where $n = \sup\{|D|: D \text{ is a closed discrete subset of } X\}$ (see [BH]). In [BH, 4.4] Burke and Hodel use a version, due to Burke [BH, 4.1], of the Erdös-Rado Δ -system lemma to prove the theorem below. Here we give a direct proof suggested by techniques of Pol [P₁]. (These in turn derive from ideas of Ponomarev [P₂] and Šapirovskii [S]; see also [E, 3.12.10] and [BH, 4.6].)

Theorem (Burke and Hodel). If X is T_1 , then $|X| \leq 2^{\Delta(X) \cdot psw(X)}$.

PROOF. Let $\mathfrak{m}=\Delta(X)\cdot\operatorname{psw}(X)$, let \mathcal{G} be a separating open cover of X with $\operatorname{ord}(x,\mathcal{G})\leq\mathfrak{m}$ for all $x\in X$, and for each $x\in X$ let $\mathcal{G}_x=\{G\in\mathcal{G}\colon x\in G\}$. Construct a sequence $(Y_\xi)_{\xi<\mathfrak{m}^+}$ such that:

- (1) For each $\xi < \mathfrak{m}^+$, $Y_{\xi} \subset X$ and $|Y_{\xi}| \leq 2^{\mathfrak{m}}$.
- (2) If $\eta \leq \xi < \mathfrak{m}^+$, then $Y_{\eta} \subset Y_{\xi}$.
- (3) If $0 < \xi < \mathfrak{m}^+$ and $\mathfrak{A} \subset \bigcup \{\mathfrak{G}_x \colon x \in \bigcup_{\alpha < \xi} Y_\alpha\}$ with $|\mathfrak{A}| \le \mathfrak{m}$ and $X \bigcup \mathfrak{A} \neq \emptyset$, then $Y_{\xi} \bigcup \mathfrak{A} \neq \emptyset$.

(Set $Y_0 = \emptyset$. If $0 < \xi < \mathfrak{m}^+$ and Y_α is already defined for all $\alpha < \xi$, let E be the set obtained by choosing a point from each nonempty member of $\{X - \bigcup \mathfrak{A}: \mathfrak{A} \subset \bigcup \{\mathfrak{S}_x : x \in \bigcup_{\alpha < \xi} Y_\alpha\}, |\mathfrak{A}| \le \mathfrak{m}\}$ and set $Y_\xi = E \cup (\bigcup_{\alpha < \xi} Y_\alpha)$.)

Let $Y = \bigcup_{\xi < \mathfrak{m}^+} Y_{\xi}$. It suffices to show that Y = X. Suppose $p \in X - Y$. For each $x \in Z = X - \{p\}$ there is $G_x \in \mathcal{G}_x$ with $p \notin G_x$. Let $\mathcal{V} = \{G_x : x \in Z\}$ and, by Zorn's lemma, choose $D \subset Z$ such that $D \cap \operatorname{st}(x, \mathcal{V}) = \{x\}$ for all $x \in D$ and $Z \subset \bigcup_{x \in D} \operatorname{st}(x, \mathcal{V})$. Let $\mathcal{U} = \{U \in \mathcal{V} : U \cap D \neq \emptyset, U \cap Y \neq \emptyset\}$. Note that

Received by the editors March 26, 1979.

AMS (MOS) subject classifications (1970). Primary 54A25.

Key words and phrases. Cardinality of a topological space, separating open cover, point separating weight, discreteness character.

¹This research was supported in part by Ohio University Research Committee Grant No. 535.

^{© 1980} American Mathematical Society 0002-9939/80/0000-0132/\$01.50

450 R. L. BLAIR

D is closed discrete in $Z = \bigcup \{X - G: G \in \mathcal{G}_p\}$, so |D| < m and hence $|\mathfrak{A}| < m$. Then there is $\beta < m^+$ with $U \cap Y_\beta \neq \emptyset$ for all $U \in \mathfrak{A}$. Clearly $\mathfrak{A} \subset \bigcup \{\mathcal{G}_x: x \in \bigcup_{\alpha < \beta + 1} Y_\alpha\}$ and $p \in X - \bigcup \mathfrak{A}$, but $Y_{\beta + 1} \subset Y \subset \bigcup_{x \in D} \operatorname{st}(x, \mathfrak{A})$ and hence $Y_{\beta + 1} - \bigcup \mathfrak{A} = \emptyset$, a contradiction.

REFERENCES

- [BH] D. K. Burke and R. E. Hodel, The number of compact subsets of a topological space, Proc. Amer. Math. Soc. 58 (1976), 363-368.
 - [E] R. Engelking, General topology, PWN, Warsaw, 1975; English Transl., PWN, Warsaw, 1977.
- [P₁] R. Pol, Short proof of two theorems on cardinality of topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1245–1249.
- [P₂] V. I. Ponomarev, On the cardinality of bicompacta which satisfy the first axiom of countability, Dokl. Akad. Nauk SSSR 196 (1971), 296-298 = Soviet Math. Dokl. 12 (1971), 121-124.
- [S] B. Šapirovskii, On discrete subspaces of topological spaces: weight, tightness and Suslin number, Dokl. Akad. Nauk SSSR 202 (1972), 779-782 = Soviet Math. Dokl. 13 (1972), 215-219.

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OHIO 45701