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PROOF OF A THEOREM OF BURKE AND HODEL ON THE

CARDINALITY OF TOPOLOGICAL SPACES1

ROBERT L. BLAIR

Abstract. Techniques of Pol are used to give a direct proof of Burke and Hodel's

inequality |x"| < 2A<*)',sw<-,r>, where A(X~) is the discreteness character of the T,

space X and psw(Jf ) is the point separating weight of X.

A cover S of a topological space X is separating if for each x, v G X with x =?*= v

there is G G § with x G G and v G G. For a T, space X the point separating weight

psw(A') of X is u • n, where n is the smallest cardinal such that X has a separating

open cover § with ord(x, @ ) < rt for all x G X, and the discreteness character A(X)

of X is w • n, where n = sup{|Z)|: Z) is a closed discrete subset of X) (see [BH]). In

[BH, 4.4] Burke and Hodel use a version, due to Burke [BH, 4.1], of the Erdös-

Rado A-system lemma to prove the theorem below. Here we give a direct proof

suggested by techniques of Pol [PJ. (These in turn derive from ideas of Ponomarev

[P2] and Sapirovskiï [S]; see also [E, 3.12.10] and [BH, 4.6].)

Theorem (Burke and Hodel). If X is Tx, then \X\ < 2A(Jf)psw(*>.

Proof. Let m = A(A') • psw(A'), let S be a separating open cover of X with

ord(x, g) < m for all x G X, and for each x G X let Qx = [G E § : x E G).

Construct a sequence (Y¿)i<m+ such that:

(1) For each £ < m+, Y( c X and | Y(\ < 2m.

(2) If Tj < £< m+,then 7„ c Yv

(3) If 0 < £ < m+ and % c U {@x: x G U a<(Ytt} with \%\ < m and X -

U 9l ¥= 0, then Ye - U % ^ 0.

(Set T0 = 0. If 0 < !< m+ and Ya is already defined for all a < £, let £ be the

set obtained by choosing a point from each nonempty member of {X — (J %:

% C U (A:x G U a<£Ta), |%| < m} and set Tt = E u (Ua<£T0).)

Let y = U £<m+y£- II suffices to show that Y = X. Suppose p EX - Y. For

each x G Z = X - {p} there is Gx E §x withp G Gx. Let T = {Gx: x E Z) and,

by Zorn's lemma, choose D c Z such that D n st(x, 'T) = {x} for all x G D and

Z c Uxe/) st(x, T). Let % = {U G CV: U n L> ̂ = 0, t/ n T ^ 0). Note that
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D is closed discrete in Z = U {A" - G: G G §p), so \D\ < m and hence |<?L| <

m. Then there is ß < m+ with U n Yß i- 0 for all i/et. Clearly % c U {S*:

x E Ua<0+Ira} and/» E X - (J %, but Yß+X G Y g Ux(eD st(x, °V) and hence

Yß+X — \J °à- = 0, a contradiction.
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