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PROOF OF A THEOREM OF BURKE AND HODEL ON THE
CARDINALITY OF TOPOLOGICAL SPACES!

ROBERT L. BLAIR

ABSTRACT. Techniques of Pol are used to give a direct proof of Burke and Hodel’s
inequality |X| < 28X)Ps™X) where A(X) is the discreteness character of the T,
space X and psw(X) is the point separating weight of X.

A cover § of a topological space X is separating if for each x,y € X with x # y
thereis G € § with x € Gandy & G. For a T, space X the point separating weight
psw(X) of X is w - n, where n is the smallest cardinal such that X has a separating
open cover § with ord(x, §) < nfor all x € X, and the discreteness character A(X)
of X is w - n, where n = sup{|D|: D is a closed discrete subset of X } (see [BH]). In
[BH, 4.4] Burke and Hodel use a version, due to Burke [BH, 4.1), of the Erdos-
Rado A-system lemma to prove the theorem below. Here we give a direct proof
suggested by techniques of Pol [P,]. (These in turn derive from ideas of Ponomarev
[P,] and Sapirovskii [S]; see also [E, 3.12.10] and [BH, 4.6].)

THEOREM (BURKE AND HODEL). If X is T, then |X| < 28)pswiX),

PROOF. Let m = A(X) - psw(X), let § be a separating open cover of X with
ord(x, §) < m for all x € X, and for each x € X let §, = (G € §: x € G}.
Construct a sequence (Y;);,,+ such that:

(1) Foreach{ <m™, Y, C X and |Y,| < 2™

@ Ifn<&{<m* thenY C Y,

@IEO0<é{<m® and U C U {5,: x € U .Y, } with |U| < m and X —
UAU#D, thenY, — UUF*D.

(Set Yo, =.If 0 < £ < m™ and Y, is already defined for all a < &, let E be the
set obtained by choosing a point from each nonempty member of {X — U U:
UC U ({S:x €U Y} |U <m)andset Y, = E U (U, Y,).)

Let Y = U ¢+ Y, It suffices to show that Y = X. Suppose p € X — Y. For
eachx € Z= X — {p) thereis G, € §, withp & G..Let V = {G,: x € Z} and,
by Zorn’s lemma, choose D C Z such that D N st(x, V) = {x} for all x € D and
Z C Ugep stx, V). Let W ={U EV: Un D#J, Un Y #J). Note that
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D is closed discrete in Z = U {X — G: G € §,}, so |D| < m and hence || <
m. Then thereis 8 < m* with U N Y, # S forall U € AU. Clearly A c U {$,:
x € Upeps1 Yo} andp € X — U, but Y, C Y C Uyep st(x, V) and hence
Y, — U U =, a contradiction.
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