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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and

polished character, for which there is no other outlet.

INTERPOLATION BY A FINITE BLASCHKE PRODUCT1

RAHMAN YOUNIS

In this note, we present constructive proofs of the following two interpolation

results:

Theorem. If zx, . . . , zn are distinct real numbers and if wx, . . . ,wn are arbitrary

real numbers, then there exists a rational function f with real poles which maps the

upper-half plane to itself and satisfies f(z¡) = w¡ for i = 1, . . . , «.

A finite Blaschke product is a complex function of the form

, = i\ 1 - a¡z J

where |A| = 1, \a¡\ < I, i = I, . . . , m and m > 0.

Corollary. 7/ a,,..., a„ are distinct complex number of modulus one and if

/?,,...,/?„ have modulus one, then there exists a finite Blaschke product B such that

B(a,) = ßi for i = 1,...,«.

An algebraic proof of the existence of the function / in the above theorem is

implicitly given in [3], and an independent proof of its corollary was given in [2]. A

recent preprint of M. B. Abrahamse and S. D. Fisher [1] includes an existence

proof of the function / in the above theorem.

Proof of the theorem. Let

"w—<-â(^hi,bb)'
i¥=k i+k
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and gk(z) = - w\l'z for 1 < k < n. Note that each pk has real zeros and each z,

(/ 7e k) is a pole for pk. Eachp^ and gk maps the upper half-plane to itself. Hence

each fk = gk° pk maps the upper half-plane to itself and satisfies fk(z¡) = 0 (/ ¥= k),

Sk(zk) = w*- Set/ = 2^= i Sk; then/is the required rational function.

Proof of the corollary. Without loss of generality, we can assume that a, and

/3, are different from 1 for / = I, . . . , n. Let/ be as in the theorem which maps

©(a,.) to 0 (/?,.) (/ = 1, . . . , n), where 0(z) = /(l + z)/(\ - z), \z\ < 1. The func-

tion B = 0 ~ ' °/° 0 is the required finite Blaschke product.

Acknowledgement. I am grateful to Professor Edward Azoff for helpful

discussions.
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