SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

INTERPOLATION BY A FINITE BLASCHKE PRODUCT¹

RAHMAN YOUNIS

In this note, we present constructive proofs of the following two interpolation results:

THEOREM. If z_1, \ldots, z_n are distinct real numbers and if w_1, \ldots, w_n are arbitrary real numbers, then there exists a rational function f with real poles which maps the upper-half plane to itself and satisfies $f(z_i) = w_i$ for $i = 1, \ldots, n$.

A finite Blaschke product is a complex function of the form

$$B(z) = \lambda \prod_{i=1}^{m} \left(\frac{z - a_i}{1 - \bar{a}_i z} \right),$$

where $|\lambda| = 1$, $|a_i| < 1$, i = 1, ..., m and $m \ge 0$.

COROLLARY. If $\alpha_1, \ldots, \alpha_n$ are distinct complex number of modulus one and if β_1, \ldots, β_n have modulus one, then there exists a finite Blaschke product B such that $B(\alpha_i) = \beta_i$ for $i = 1, \ldots, n$.

An algebraic proof of the existence of the function f in the above theorem is implicitly given in [3], and an independent proof of its corollary was given in [2]. A recent preprint of M. B. Abrahamse and S. D. Fisher [1] includes an existence proof of the function f in the above theorem.

Proof of the theorem. Let

$$p_k(z) = -w_k - \sum_{\substack{i=1\\i\neq k}}^n \left(\frac{1}{z_i - z_k}\right) + \sum_{\substack{i=1\\i\neq k}}^n \left(\frac{1}{z_i - z}\right),$$

Received by the editors June 13, 1979.

AMS (MOS) subject classifications (1970). Primary 30C15, 30D50.

¹The proofs in this note appeared in the author's doctoral thesis written at the University of Georgia under the direction of Professor K. Clancey.

and $g_k(z) = -w_k^2/z$ for $1 \le k \le n$. Note that each p_k has real zeros and each z_i $(i \ne k)$ is a pole for p_k . Each p_k and g_k maps the upper half-plane to itself. Hence each $f_k = g_k \circ p_k$ maps the upper half-plane to itself and satisfies $f_k(z_i) = 0$ $(i \ne k)$, $f_k(z_k) = w_k$. Set $f = \sum_{k=1}^n f_k$; then f is the required rational function.

PROOF OF THE COROLLARY. Without loss of generality, we can assume that α_i and β_i are different from 1 for $i=1,\ldots,n$. Let f be as in the theorem which maps $\emptyset(\alpha_i)$ to $\emptyset(\beta_i)$ $(i=1,\ldots,n)$, where $\emptyset(z)=i(1+z)/(1-z)$, $|z| \le 1$. The function $B=\emptyset^{-1}\circ f\circ \emptyset$ is the required finite Blaschke product.

ACKNOWLEDGEMENT. I am grateful to Professor Edward Azoff for helpful discussions.

BIBLIOGRAPHY

- 1. M. B. Abrahamse and S. D. Fisher, Mapping intervals to intervals (preprint).
- 2. D. C. Cantor and R. R. Phelps, An elementary interpolation theorem, Proc. Amer. Math. Soc. 16 (1965), 523-525.
- 3. D. M. Koteliansky, About certain applications of quadratic forms to the Nevanlinna-Pick problem, Z. Inst. Mat. Akad. Nauk USSR 1 (1937), 73-88. (Ukrainian)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602

Current address: Department of Mathematics, University of Wisconsin at Milwaukee, Milwaukee, Wisconsin 53201