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REDUCING THE CODIMENSION OF KAHLER IMMERSIONS

H. JACOBOWITZ

Abstract. The codimension of an immersion of a Kahler manifold may be

reduced if there is a holomorphic vector field normal to the manifold.

There have been several recent results on reducing the codimension of an

isometric immersion (Erbacher [2], Yau [3, p. 351]) and in particular of a minimal

immersion (Colares and do Carmo [1]). In connection with these, the following

result for complex geometry may be of interest.

Theorem. Let M be a complex submanifold in C with normal bundle N and let V

be an open subset of M. If N \ v admits r holomorphic sections, then M lies in some
C~r.

Recall that for any complex manifold U there is a splitting of the complexified

tangent bundle C ® T(U) = TX'°U ® T°-XU. For typographical convenience let

us denote TU0U by TU for U = M, V or C and the restriction of TX'°C to a

bundle over M (or V) by T'M (or TV). In the theorem N is the normal bundle of

M in TCP, N = {£ G T'M such that <Z, O = 0 for all Z G TM). Here we use

the standard Kahler metric on TC. N is a complex bundle over M but in general it

is not a holomorphic bundle. Indeed, in an appropriate sense, it is an antiholomor-

phic subbundle of T'M.

We may assume that F is a coordinate patch with coordinates z„ . . . , zm. Let

Zk = d/dzk. Let / = (ix, . . ., ik) be a multi-index with nonnegative integer compo-

nents and let a be a section of T' V. Using the usual connection on TC we derive a

new section Z1 Y o by taking the |/|-fold covariant derivative of a. Here |/| = il

+ • • • + ik and Z' means first differentiate ik times with respect to Zk, etc.

Choose some point q E V. Define Sq = {£ G 7"K |£ = Z1 Y o, I some multi-

index and a some holomorphic section of TV). Then S = U Sq, the union taken

over all points q E V, is a subset of T' V. We shall soon see it is a subbundle.

A section t of TV is said to be parallel if its covariant derivative in each

direction is zero.

Lemma. Let t be a parallel section of T V. If r is orthogonal to S at some point

q G V, then t is orthogonal to S at all points of V.

Proof. Because r is parallel we have (1) for any local section a of TV,

Z\a, t> = <Z7 Y a, t). This also holds for Z, so (2) <o% t> is a holomorphic

function whenever a is a local holomorphic section of  TV. Now if a is a
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holomorphic section in a neighborhood of q then, since t is orthogonal to S at q,

<Z7 Y a, t> = 0 at q and so by (1), Z\a, t> = 0 at q for ail /. By (2), <o, t> = 0

in this neighborhood. Now analytic continuation may be used to show that

(Z1 Y a, t) =0 whenever a is a local holomorphic section of TV.

Corollary S and its orthogonal complement are holomorphic subbundles over V

of TC and each is invariant under parallel translation.

Proof. Let S ± = U {I E TCq\(s, |> = 0 for aU s G Sq), the union taken over

all q G V. Any £ E TCq has a parallel extension. Therefore the Lemma implies

that S ± has constant fibre dimension and is invariant under parallel translation.

The same must hold for S. But parallel sections are holomorphic. Thus both S and

S ± are holomorphic subbundles.

Now we have 7" V = S © S ± and this decomposition is invariant under parallel

translation. It follows easily that there is a compatible orthogonal decomposition

C = C~p X C where p = dim Sx. Pick a point q G V c C. So q = (qx, q¿

with qx G C"-p and q2 G C. Since TV G S G TC~P, it follows that V G C~p X

{q2}. Now if we are given, as in the Theorem, r holomorphic sections of T'V

which are orthogonal to TV then dim Sx > r and so V is contained in some C"~r

and the same must be true for M.

The following observation relates this Theorem to the results of Erbacher and

Yau. Let £ be a holomorphic section of T' V and assume £ is orthogonal to TV. We

write £= U - UU where U is in the real tangent space of C and J gives the

complex structure. Then F as a real submanifold of R2" is totally geodesic in the

directions U and JU.
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