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ON SEMIHEREDITARY NONCOMMUTATTVE

POLYNOMIAL RINGS

P. PILLAY1

Abstract. McCarthy [4] showed that a polynomial ring over a commutative von

Neumann regular ring is semihereditary. Camillo [1] proved the converse. In this

paper we examine polynomial rings over von Neumann regular rings which are not

necessarily commutative.

By a ring R we shall mean an associative ring with unit element. R is von

Neumann regular if for each a G R, there is an a' in R such that aa'a = a. Then

e = aa' is an idempotent and aR = eR. A ring S is right (resp. left) semihereditary

if each of its finitely generately right (resp. left) ideals is projective as an S-module.

Let S = R [x] be the polynomial ring in the (commuting) indeterminate x.

Theorem. The following are equivalent.

(a) R is von Neumann regular.

(b) For each a G R,aS + xS is a projective right ideal of S.

(c) For each a G R, Sa + Sx is a projective left ideal of S.

Proof. Let R be von Neumann regular. If a G R then there exists an a! G R

satisfying aa'a = a. Let e = aa'. From the equations

a = (e + (1 — e)x)a,       x = (e + (1 — e)x)(l — e + ex),

e + (1 — e)x = aa' + x(l — e),

we deduce that aS + xS = (e + (1 — e)x)S. It is easily verified that / = e +

(1 — e)x is a regular element (= nonzero-divisor) of 5 so that left multiplication by

/induces an isomorphism between S and fS. Hence aS + xS is projective, proving

(a)=*(b).

Suppose that for all a G R, aS + xS is projective. Fix a G R and let K = aS +

xS. By the dual basis lemma for projective modules (see for example [2, p. 141])

there exist S-homomorphisms a and ß from K into S, such that for every k G K,

k = aa(k) + xß(k). In particular, a — aa(a) = xß(ä). Since x is central in S and «

is an 5-homomorphism, xa(a) = a(a)x = a(x)a so that ax - aa(x)a = x2ß(a).

Equating coefficients of x on both sides, we obtain a = aa'a where a! is the

coefficient of x of the polynomial a(x). Hence R is von Neumann regular, proving

(b) => (a). The equivalence of (a) and (c) now follows from the left-right symmetry

of (a).
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Corollary. If R[x] is either left or right semihereditary, then R is a von Neumann

regular ring.

We remark that the corollary follows immediately from a result of Jensen [3],

where it is proved that for any ring R w.gl.dim R[x] = w.gl.dim R + 1.

If R[x] is semihereditary, then w.gl.dim R[x] < 1 so that w.gl.dim R = 0, from

which it follows that R is von Neumann regular.
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