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ALGEBRAIC CONDITIONS LEADING TO

CONTINUOUS LATTICES

JIMMIE D. LAWSON

Abstract. This paper is concerned with sufficient conditions for a meet-continu-

ous lattice L to be a continuous lattice. In §2 this is shown to be true if the prime

elements order generate and (L, V) is a compact topological semilattice. In §3 it is

shown that a meet-continuous lattice with finite breadth is a continuous lattice.

In 1972 D. Scott introduced a class of lattices called continuous lattices in order

to provide models for the type free calculus in logic [10]. The discovery of K.

Hofmann and A. Stralka [2] that continuous lattices are precisely the compact

Hausdorff topological semilattices with identity and with a basis of subsemilattices

(a class of semilattices previously studied by topological algebraists) has launched a

recent flurry of activity in this area.

Proceeding from smaller classes of lattices to larger, we have the following

hierarchy of lattices: (1) continuous lattices, (2) compact topological semilattices

with 1, (3) meet-continuous lattices, (4) complete lattices. In this paper we address

ourselves to the general question of finding sufficient conditions on a lattice in a

larger class in order that it be in a smaller class. For example Hofmann and Stralka

gave necessary and sufficient algebraic conditions on a complete lattice in order

that it be a continuous lattice. In [8] it was shown that a compact topological

semilattice with 1 on a finite-dimensional Peano continuum or on a totally

disconnected space must have a basis of subsemilattices and hence be a continuous

lattice. In [7] these results were generalized to a class of spaces including those

which at each point are locally homeomorphic to the product of a totally discon-

nected space and a finite-dimensional Peano continuum. In [6] an example was

constructed showing that class (1) is a proper class of class (2). Examples that the

other inclusions are strict also exist.

1. Definitions and basic results. A lattice L is complete if every subset has a least

upper bound and a greatest lower bound. A set D c L is up-directed if for any

dx,d2E D, there exists d3 E D such that dx < d3 and d2 < d3. A semilattice S is

meet-continuous if whenever x = sup D for an up-directed set D, then xv = sup Dy

for all v ED. This definition is easily shown to be equivalent to the following

conditions: if {xa} in an increasing net (i.e. a < ß implies xa < x^) with supremum

x and {yß] is an increasing net with supremum y, then the increasing net {x^}

has supremum xy for all x,y E L.
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Let L be a complete lattice and define a new relation « on L as follows: x « y

if for all up-directed sets D the relation v < sup D implies the existence of ad G D

with x < d. Equivalently x « y if v < sup yl implies that x < sup F for some finite

F G A. The lattice L is continuous if for all .y G L, y = sup{x: x <>>}. By the

results of Hofmann and Stralka [2] L is continuous if and only if there is a compact

Hausdorff topology on L such that L becomes a topological semilattice relative to

the multiplication (x, v)—»xy = inf{x, v} and has a basis of neighborhoods at

each point which are subsemilattices. In this case the topology is unique and is

generated by the sets {s G L: x ^ s) and {s G L: x « s), x G L.

In a partially ordered set P, if A c P, then IA = {z G P: z < a for some

a G A) and f^ = {v G P: a < _y for some a G A). The sets |{x} and \{x) are

denoted by jx and fv resp. If S is a (lower) semilattice, then a subset A g S is said

to oroer generate S if x = inf(/l n fx) for all x G S.

An element/? G S, a semilattice, is prime if xy < p implies x < p or y < p. Let

PRIME S denote the set of all primes in S. By [1, 3.1] a continuous lattice S is

distributive if and only if PRIME S is order generating.

2. Distributive lattices. In this section we consider how the assumption of

continuity on one of the lattice operations affects the other lattice operation. It is

well known that a compact topological semilattice is a meet-continuous semilattice

(see e.g. [5]). Hence this is certainly a necessary condition for topological continu-

ity.

2.1. Proposition. Let L be a distributive complete lattice equipped with a compact

Hausdorff topology for which (L, V) is o topological semilattice. Then with respect to

this topology (L, A) ** a topological semilattice if and only if L is a meet-continuous

lattice.

Proof. We have already remarked that meet-continuity is necessary. To see that

it is sufficient, let x G L. Then \,x is a compact sublattice of L (since (L, V) is a

topological semilattice and |x = {y: y V x = x}). Since L is distributive the

mapping Xx: L -> jx defined by Xx(y) = xy is a lattice homomorphism which

always preserves arbitrary infs. The hypothesis of meet-continuity is precisely the

condition needed for Xx to preserve sups of up-directed sets, i.e., Ax(sup D) =

sup(XxD). Hence by [4, Theorem 15] the mapping Xx is continuous. Thus transla-

tions are continuous, i.e., multiplication in (L, /\) is separately continuous. It

follows from [3, Theorem 6] that multiplication is then jointly continuous.   □

2.2. Remark. The proposition may be proved in a more direct fashion with the

stronger hypothesis that (L, V) is a continuous lattice. In this case {xa} converges

to x if and only if x is the lim sup of {xa} and all of its subnets. The hypotheses

imply that xy will be the lim sup for {x^} and all of its subnets and hence this

net will converge to xy. However even in this case (L, /\) need not be a continuous

lattice.

I am indebted to M. Mislove for helping me work out the details of the proof of

the following proposition.
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2.3. Proposition. Let L be a complete lattice equipped with a compact Hausdorff

topology for which (L, V) is a topological semilattice. If PRIME L order generates L,

then L is a distributive continuous lattice (with respect to the meet operation).

Proof. Since PRIME L order generates, L is a distributive lattice. We show L is

meet-continuous. Let D be a subset of L which is directed upward, and let

x = sup D. For y E L, we have z = sup(Dy) < xv. Suppose z < xy. Then since

PRIME L order generates there exists p G PRIME L such that z < p and xy ^ p.

Since xv < y, we have y $, p. So d < p since dy < p for all d E D. Hence

x = sup Z> < p, a contradiction since xv ^ p. Thus z = xy and L is meet-continu-

ous. It follows from Proposition 2.1 that L is a compact topological lattice.

To show that L is a continuous lattice, we must show that x has a basis of

subsemilattices at each point. Let x E L. By [8] it suffices to show that x has a

basis of subsemilattices in the sublattice |x. Note that the primes of |x order

generate jx, since if p E PRIME L, then xp is prime in |x. This reduction

essentially amounts to allowing us to assume x = 1.

For each open set U with 1 E U, let zv = inf U. Then the set {zv} is up-di-

rected, hence converges to its supremum y (since L is compact). Since each ]zu is a

semilattice and a neighborhood of 1, if v = 1, then {Tz^} would constitute a basis

of subsemilattices at 1. We assume y ¥= 1 and derive a contradiction.

Choose open sets U0 and V0 such that y E V0 = J, V0, 1 G t/0 = | i/0, and

cl( C/0) n cl( K0) = 0. (We can do this since L is a compact partially ordered space

in the sense of Nachbin; hence 1 v has a basis of open lower sets and 1 has a basis

of open upper sets [9].) Choose open sets Ax and Bx such that 1 E Ax, y E Bv

AXAX c U0, and Bxy Bx c V0. Pick open sets Ux and K, such that 1 E Ux = t £/,,

>> G F, - 1F„ cl([/,) c fi4„ cl(K,) c IB,. Note that i/,l/, c U0 and K, V F, C

K0. In this manner sequences of open sets (t/,: 0 < /} and {V¡: 0 < /} can be

chosen recursively so that for each i, 1 G U¡ = fU¡, y E V¡ = [V¡, cl(c/ + 1) c U¡,

cl(F/+1) c V„ and Ui+xUi+x c U» Vi+X V Vl+l C F,.

Let z, = inf í/,. By the choice of v, z, < y, and hence z, G P). Since z, is in the

closure of the subsemilattice generated by U¡, we can choose v, G V¡ such that

v, = /\ F for some finite F c U¡. By an argument which is almost standard by

now (see the proof of Theorem 8 of [4] or Proposition 6.3 of [5]) we conclude that

w = sup{ v,: 1 < i) G cl(F0). Also by the way the sequence {!/,.} was chosen,

T = n Uj = D cl( Uj) is a compact subsemilattice, and hence has a least element

t. Since U0 = ]U0, \t c U0. Thus w G Tí. Since the primes order generate, there

exists a prime p such that w < p and t ^ p. Since t G |p, T n [p = 0. Thus

there exists an /' such that c\(U,) n |p = 0. But there exists a finite set F such that

F c U¡ and inf F = v, < w < p. Since p is prime x < p for some x G F, i.e.,

Uj n Ip ¥= 0,a. contradiction.   □

The distinction between complete lattices in which (L, /\) is a compact topologi-

cal semilattice and continuous lattices appears to be a rather fine one. Examples of

the former that are not the latter have been few and far between (see [6]). The

preceding proposition may be restated to give another set of sufficient conditions

for a compact semilattice to be a continuous lattice.
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2.4. Corollary. Let L be a complete lattice equipped with a compact Hausdorff

topology for which (L, A) is a topological semilattice. If PRIME L order generates

and (L, V) is join-continuous, then L is a continuous lattice and a topological lattice.

Proof. Since PRIME L order generates, L is distributive. By 2.1 (with the role of

the meet and join operations interchanged) L is a compact topological lattice.

Hence by 2.3 L is a continuous lattice.

Remark. By [4] the topology on L is an intrinsic topology, the so-called

CO-topology.

In [1] it is shown that a continuous lattice L which is distributive is order

generated by PRIME L. It is unknown whether the following converse holds: Let L

be a compact topological semilattice with 1 in which PRIME L generates. Then L

is continuous. Corollary 2.4 shows this conjecture is true with the additional

assumption that (L, V) is join-continuous.

Let X be an infinite set and let L = X u {0, 1}. Define a lattice structure on L

by xy = 0, x V v = 1, for x,>> G X, x ¥= y. Then L is a complete lattice which is a

continuous lattice with respect to both of its operations. However the CL-topolo-

gies induced by each of the operations do not agree ({0} is open for (L, V) while

{1} is open for (L, A))- By 2.1 and the uniqueness of the topology [4] the two must

agree for distributive lattices. Are there other classes of interest for which they

would agree?

3. Semilattices of finite breadth. A subset A of a semilattice S is said to be an

irredundant set if for any two finite subsets Fx, F2 c P, inf F, = inf F2 implies

Fx = F2. Let N2 denote the semilattice of all finite subsets of N, the natural

numbers, under union. The singletons in ^2 form an irredundant set, and it is a

straightforward exercise to show that a semilattice has a countable irredundant set

if and only if it has a semilattice isomorphic to N2.

The semilattice S has finite breadth n if n is the largest cardinal such that S has

an irredundant subset of cardinality n; S is said to have weak finite breadth if it has

no countable irredundant subset (or equivalently no isomorphic copy of ^2). Finite

breadth implies weak finite breadth, but not conversely.

3.1. Proposition. If S is a complete meet-continuous lattice, x ^ v, and sup{z:

z « x) < y, then |x\|y contains a countable irredundant set.

Proof. First of all note that as a result of meet continuity a « b iff sup D = b

for some up-directed set implies a < d for some d G D.

Since not x « x, there exists a directed set D with x = sup D, but x ^ d for all

d G D. Pick x, G D such that x, ^ v.

Suppose AK = (x,, . . . , x^} has been chosen satisfying (i) AK is irredundant,

and (ii) the subsemilattice SK generated by AK is a subset of jx\],y. Let z =

x,x2 • • • xK. Since not z « x, there exists a directed set D with x = sup D, but

z ^ a* for all d G D. For each s G SK, sD is a directed set converging up to s.

Since SK is finite, there exists b G D such that sd ^ td if s ¥= t for all s, t G SK, for

all d > b. Since sup zD = z and z ^ y, there exists p > b, p G D, such that
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pz ^ v. Let xK+x = p. Then it is easily verified that {x„ . . . , x^+1} is irredundant

and the subsemilattice this set generates is a subset of |x\|_y. Hence by recursion

there exists a set with the desired properties.   □

3.2. Corollary. Let S be a complete meet-continuous lattice satisfying the

following condition: for all x G S, x = sup{.y < x: ly has weak finite breadth}.

Then S is a continuous lattice. In particular, a complete lattice of finite breadth is

continuous if and only if it is meet-continuous.

Proof. Let x G S. Let_y = sup{z: z « x}. If v < x, then there exists q < x such

that \,q has weak finite breadth and q { y. Let p = sup{r: / « q). Since t « q

implies t « x, we have p < v. Hence p < q. Now by 3.1, |a\J,/> contains a

countable irredundant set. However, this is impossible since ja has weak finite

breadth. Hence x = v, and thus S is continuous. The second statement is im-

mediate.   □

3.3. Corollary. Let L be a complete lattice of weak finite breadth. Then L is a

distributive continuous lattice if and only if PRIME L order generates L.

Proof. By [1] if L is a distributive continuous lattice, then PRIME L order

generates L. Conversely, if PRIME L order generates, then L is a meet-continuous

lattice (see the proof of Proposition 2.3). Hence by 3.2 L is a continuous lattice.

The order generation of PRIME L implies that L is distributive.   □

Semilattices and lattices of finite breadth have played a major role in the study

of topological semilattices and lattices (since they have close connections to the

finite-dimensional ones). It is somewhat striking that such semilattices have the

rather simple algebraic description of being complete and meet-continuous.
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