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THE NONEXISTENCE OF INVARIANT UNIVERSAL MEASURES

ON SEMIGROUPS

V. KANNAN AND S. RADHAKRISHNESWARA RAJU

Abstract. We prove that if 5 is an uncountable subsemigroup of a group, then

every (left or right)-translation invariant o-finite measure defined on all subsets of

S must be trivial. This answers a question posed by Ryll-Nardzewski and Telgar-

sky.

A universal measure on a set is, by definition, a (countably-additive, positive,

extended real-valued) measure defined on all subsets of that set. A measure p on

(A', 2) is said to be semiregular, if whenever A G 2 and n(A) > 0, there is B G 2

such that B c A and such that 0 < /x(5) < oo. It is easily seen that every a-finite

measure is semiregular. We start with a Proposition that will be heavily used in our

Theorem. N, denotes the first uncountable cardinal number.

Proposition. Every universal semiregular measure is H ¡-additive.

Proof. Let us recall the definition of N,-additivity. This means that whenever

{Aa: a 6 /} is a class of pairwise disjoint measurable sets and |/| = N, and if

A = U {Aa: a G J) is measurable, then it is true that the measure of A is equal to

the sum of the measures of A^s. If ju is the measure, what we demand is

H(A) = 2aey/i(^4a), the sum on the right being defined in the most natural way, as

Sup |   2   mC^o) : F is a finite subset of J >.

To prove the Proposition, let ju. be a universal semiregular measure on a set X, let

J be an index set with cardinality Np let {Aa: a G J) be a family of pairwise

disjoint subsets of X indexed by J and let A be their union. We have to prove that

Case 1. Let iM(Aa) = 0 for every a e /. Then we claim that ¡i(A) = 0. If not, by

the semiregularity of fi, there is some B c A such that 0 < fi(B) < oo. Define a

measure v on the index set / by the rule

v(E) = J (J   BnAa)

It is easily checked that v is also countably additive. In fact it is a universal

measure on / satisfying v(J) = p(B) and hence 0 < v(J) < oo. Further if a G J is
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any element, we have

Since J is of cardinality t*,, this contradicts a well-known theorem of Ulam (see

[O, Theorem 5.6, p. 25]). This contradiction proves that n(A) should be zero.

Case 2. Let n(Aa) > 0 for uncountably many a in J. Then 2aey m(^0) has to be

oo. Further, there is a positive integer n such that n(Aa) > \/n for infinitely many

(in fact, uncountably many) a in J. Since A contains all these .40's, the countable

additivity of p. implies that ¡i(A) is also oo. Thus the equality (1) is valid in this case

also.

Case 3. Let /, = {a E J: n(Aa) > 0} and let /, be countable. Let B =

\Ja^jtAa. Then we have

H(A) = (i(B) + ¡i(A \ B)

=   21   M(-^a) + ^(^ \ B)   by countable additivity

=   2   M-^o) + 0    by Case 1, since
Og/|

A\B = (J {^„:a E/N/,}

and since fi(,4a) = 0 Va E y \ 7,

= 2 /»(^a)  since^(^a) = ov«e;\;,.

Thus the Proposition is proved.

Theorem. Let S be an uncountable semigroup embeddable in a group. Let [i be a

a-finite universal right translation-invariant measure on S. Then n = 0.

Proof. Let G be a group in which 5 is embedded as a subsemigroup. Let E be

any subset of S having cardinality N,. Let H be the subgroup of G generated by E.

Let A be a subset of G meeting each left coset of H in G, in exactly one point.

Then one easily verifies that Ax and Ay are disjoint, whenever x and y are distinct

elements of H. Let

Ax = (Ax) n S (2)

for every x in H. Then we have

S=U{Ax:xGH) (3)

because we have G = U {j4x: * E #}• Thus (3) represents S as the union of a

class of pairwise disjoint sets, indexed by the set H having cardinality N,. Since ju is

o-finite and hence semiregular, the previous Proposition applies. Thus, we have

KS)=   2   ÂAX). (4)
xeH

Now consider two cases.

Case 1. Let n(Ax) = 0 for every x in //. Then by (4) we have n(S) = 0 and thus

the result is proved in this case.
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Case 2. Let ¡i(Ax) > 0 for some x in H. Now if y is any element of E, we have

Aj = {Ax n S)y = (Axy) n Sy

C /Ixv n S   since 5 is closed under multiplication and v G 5

and therefore K-^xy) > M^x-V) = M^x) because /x is translation-invariant, > 0 by

our assumption in this case. Thus {A^: y G E) is a collection of pairwise disjoint

subsets of 5 indexed by a set of cardinality N,, such that every member in this

collection has positive measure. This contradicts the assumption that ¡i is a-finite.

Hence Case 2 does not arise at all.

Corollary. Let S be an uncountable commutative cancellative semigroup. Then

every a-finite translation-invariant universal measure on S is trivial.

Proof. Every such semigroup can be embedded in a group and therefore our

Theorem applies.

Remarks. The above Corollary answers a question posed in [R-T]. The special

case of the above Theorem, where S itself is assumed to be a group, has been

proved first in [E-M] and then by a different method in [R-T].

We conclude with the following open question.

Problem. Is every translation-invariant universal semiregular measure on a group

necessarily a multiple of the counting measure?
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