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AN ASYMPTOTIC FORMULA FOR THE TAYLOR COEFFICIENTS

OF AUTOMORPHIC FORMS

SCOTT WOLPERT1

Abstract. An asymptotic estimate for the lattice of a Fuchsian group with

quotient of finite area is discussed. The estimate is used to obtain an asymptotic

formula for the Taylor coefficients of holomorphic automorphic forms.

Let G be a Fuchsian group acting on the unit disc U with the quotient U/ G of

finite Poincaré area. S. J. Patterson [5] has given an asymptotic estimate for the

lattice arising from G. The estimate enables us to give an asymptotic formula for

the integral of an automorphic function over compact subdiscs of U. As an

application we obtain an asymptotic formula for the Taylor coefficients of auto-

morphic holomorphic forms. The reader is referred to the article of J. Lehner as a

general reference [4].

We assume throughout that G is a Fuchsian group with U/G of finite Poincaré

area. A function / defined in U is a G automorphic q form if / ° a a'g = f for all

a G G and q an integer. Denote the space of holomorphic automorphic cusp q

forms, q > 1, by Aq(G) [4]. Fix a measurable fundamental domain fl for G. A

norm for A (G) is defined by setting

Wf = fm\-\z\2f-2dxdy

for \¡/ E Aq(G). A Hubert space L2(G) of 0 forms is defined in terms of the norm

»/Ho- ri/i2(i-iziT2<&*.

The norms are independent of the choice of ß. Denote by V(G) the Poincaré area

/a4(l — \z\2)~2dx ay of ß. The lattice estimate we require was given by Patterson

[5]. His discussion will be summarized so that we can give a refinement of the error

estimate.

A continuous point pair invariant is a function with domain U X U such that

k(zv z2) = k(2 cosh rf(z„ z2) — 2)

where d(, ) is the Poincaré distance. Define the auxiliary function

L(zv z2) = 2 cosh d(zv z2) + 2.
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Following Seiberg, we associate to k three transforms Q, h, and g. The relations

among these are given by the formulae

ô(w) = r k(t)(t - wy/2dt,  k(t)=-i n»v - tyi/2dQ(w),
Jw m J,

Q(e" + e~" - 2) = g(u),

h(r) = f°° eing(u) du,       g(u) = ^-  f °° e-""/!(r) ¿r.

It is customary to describe the hypotheses in terms of h:

(i) h(r) = h(-r),

(ii) for some e > 0, h{r) is analytic in |Im r| < 5 + e, and

(iii) in this region h(r) = 0((1 -I- |r|2)_1_e).

The Poincaré series

K(z»*J-  2   *(L(«„ zj) - 4)
aEC

converges uniformly and absolutely on compact sets. Let (<¡o } be a complete

orthonormal (relative to L2(G)) system of automorphic eigenfunctions for the

operator ^(1 - |z|2)2 (32/3x2 + 92/3v2). Denote the eigenvalue of q^ by -X^, X^ >

0. A. Selberg has given the expansion

K{zv z2) = 2 h({\ - \)X/2)%{z¿%{z2)

+ 2   J /°° *(')*,(*„ \ + ir)Ep(z2, I - *•) «fr, (1)

where P is a complete set of inequivalent cusps and Ep(z, s) is the Eisenstein series

for the cusp p G P [7]. As an example, consider h(r) = (r2 + m2)-" where w >

1/4, a > 1. The appropriate hypotheses are satisfied. The inequality A((ÀM —

1/4)1/'2) > 0 holds. The series and integral of (1) converge absolutely by Mercer's

theorem [1, p. 138] for z, = z2 the series represents an element of L2(G). Patterson

introduces the kernel

Wfl-{; - t/X,     t < X,

t >X.

The transform hx(r) is obtained explicitly in terms of the Euler gamma function

and the hypergeometric function. Let r^ be chosen such that \M = 1/4 + r2 and for

j  = \ + ir^, ReO^) > \ when X^ < 1 /4. Patterson demonstrates the following.

Proposition 1. Suppose that X >\. Then hx{r) is analytic in |Im(/)| < 3/4 and

satisfies, for some c, > 0, the inequality

\hx(r)\ < ClXRe^2+ir\l + \r\2y5/\

Furthermore, ;/Re(i>) > 0, then, for fixed r,

hx(r) = ^/\T{ir)/T{\ + ir))Xl/2+ir + 0(X*#/*-»*)m
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We use this to estimate the series occuring in (1)

2     hx(rr)%(zi)%(z2)
\>l/4

<     2    IM^)II<PM(^)<PU(^)I
\.>l/4

|2\-V4,<cxx'n 2 0 + k/)"9/V*.)9v(*2)l
\_>l/4

where the last series converges in L\U/G X U/G) by the Cauchy-Schwarz

inequality and, since A,(r) = (1 + r2)"5/4, satisfies the hypotheses (i), (ii) and (iii).

The Cauchy-Schwarz inequality yields

H \hx(r)Ep(zv ± + ir)Ep(z2, \ - ir)\dr
•'-oo

< (/_ JM')I I^(*i. 5 + *f dr)l/2{S"jhxW \Ep(z2> 5 - '>)|2 ̂)1/2

and from Proposition 1 this is bounded by X l/2el(zl, Zj) with

ex(zv z2) = c,( j""  *iCH(*i> 5 + '>)|2 rf'')1/'

x(/O0ooAl(r)|^(z3,i-ir)|2<ir)l/2. (2)

Combining these remarks we have

Y(    — i)

*(z"Zz) " ( tWtï)* +    2     *'   w      n ^^(^.)«p,(^)
V2K(G)7 i/2o„<i r^-f-i)

+ *1/a(ti(*i,Za) + «¿*i>*2))

with T the Euler gamma function, e,, as above and e2 the bound for the omitted

terms of the series (we abuse notation by replacing quantities by their bounds). The

estimate e2 E L2(U/G X U/G) is valid. We postpone the consideration of e,.

Define the counting function N(X; zv z2) to be the number of a E G such that

L(azv z2) < X. As an excerise we derive Patterson's asymptotic estimate for

N(X; z„ z2). Define

Ni(X; z,, z2) = 2 kx{L(azv z2) - 4)
a

and observe that

F(X) = *#,(*; z„ z2) = f4+X /V(t>; z„ z2) <fc.
•'4

The approach consists of estimating the difference quotients

(F(X ± A-3/4) - F(X))/±XV\

Observing that N is increasing in X, one has that

F(X - *V4) - F(X) _      ,.F(X + X3'4) - F(X)
—jpfA s *(*, z„ z2) < — .
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A short argument now yields the formula

H*-i)
W z„ z2) = (jfcAx +      2       ̂ '/2r;+,    ̂ W^a)

v v{G) i      3/4<^<i      r($M + U

+ c2A'3/4(e1(z1,z2)+ 63(^2)) (3)

for c2 > 0 an appropriate constant. The relation L(0, R) = 4/(1 — P2) is required.

A continuous automorphic function /(z) is a cusp function if |/(z)|/(l — |z|2)

converges to 0 as z approaches nontangentially a cusp of G on aU. The expression

|/(z)|/(l - |z|2) projects to a function defined in a neighborhood of the cusps of

U/G. A cusp function is necessarily bounded.

Theorem 2. Let U/ G be of finite Poincaré area and f an automorphic cusp

function. Then

f       /(I - |z|2)-2^ dy = 4* ffil- \z\r2dx dy
j\z\<.r V(G)(\ - R2) Ja

+

3/4<*

•'n

Proof. By definition

f       /(l - |z|2)-2áx ̂ = f M—^; 0, zWl - \A2Y2dx dy.
j\z\<r Ja    \ 1 - R 1'1*1

Define

(4)

«o(/) = -^/nXi-klTW>

«„(/) - *1/24>»(0)r(I"+i) /Q ̂ 1 " |z|2)_2</x *•

Then from (3)

W (i - p2)  3/4o,<i (i - p2r-

+ c2X3/<[(e¿0,z) + £2(0,z))|/|(l - \z\2y2dxdy.
•'a

As e2 G L2, the integral /fl|e2(0, ^)/|(l - \z\2)~2dx dy is finite. It remains to esti-

mate the integral involving e,. Let ap be a Möbius transformation mapping U to the

upper half-plane H with op(p) = oo. The element a is chosen such that the

stabilizer of oo in apGa~' is generated by the transformation z -» z + 1. Let ß be

chosen such that op(Q) n {z|Im z > 1} is the vertical strip {z|Im z > 1, 0 < Re z

< 1}. We must estimate the integrals
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/     (f Kir)\Ep{z, \ + ir)\2 ár)1/2iM dx dy, (5)
•/o>(B)\-/-oo '     y

p E P. T. Kubota gives the following expansion

r r00 w , i^'î+'Qi2, . ,I I      Äi('") -;- dr dx dy
Jop(Q)n{\mz<.Y)   -'-oo yl

= a?,(0)logT + ^ + 0(1), (6)

y > 1, where g,(w) is the Fourier transform of /i,(r) and a^ is an explicit constant,

[2, p. 107]. A cusp function / satisfies |/(z)|v-»0 as Im z -> oo in op(Sl). We

observe first that / is bounded on ap(il); hence the integral (5) over the domain

op(Q) n {Im z < 1} is finite. The integral (6) over only the domain (z E Op(ß)|l <

y, < Imz < y2) is given by g,(0)log YJYX + 0(1). By hypothesis, \f(z)\y is

bounded. Partition the domain ^(ß) n {Imz > 1} into the subdomains ap(Q) n

{e" < Imz < e"+1), n EZ+. The integral (5) over such a domain is bounded by

Me~" for an appropriate constant M. Hence the integral (5) is convergent, the

desired conclusion.

Given \p E Aq(G) we observe that |^|2(1 - \z\2)2q is a cusp function. Define

a, = «,(|^|2(1 - \z\2f)

for appropriate j.

Theorem 3. Let \p E Aq(G), q > 1, be given in U as the Taylor series 1,„anzn.

Then

~    \aJ2Tn+l an
it 2,

n=o     n + ! (2q - 1)(1 - T)2q~x

s,%

3/4<*<i  (2q-2 + sli)(l-Tf-2+*>

and

y    kJ2 _     «o^2^1

\t0  » + 1      r(2?)(2?-l)

+    2
s..a..N2q-2+s"
>-/»*

3/4^<i   r(29- 1 + ^(2$ - 2 + j„)

^,2,-2 + i'
°(

logAf

/or S satisfying 3/4 < 5 < j .
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Proof. Define

B{R2, n, q) = [* r2n+,(l - r2)2«"2 dr.

Now from Theorem 2

2^2 k|2*(P2, n,q)=í      \M\\ - \z\2f-2dx dy
n JU\<R

au
+ O

î-p2  3/4<Jll<i (i-p2r-    \(i-p2)3/4/

By inspection 0(1/(1 - P2)3/4) refers to a function e, real analytic in P2, satisfy-

ing |e(P2)| < c/(l - P2)3/4. We substitue T = P2 and differentiate to obtain

.s kfT-o - n2«-2 = -^_ +   s   -^T7+ «m
n (1  —   i) 3/4<i(1<l    (1  -   7j'

dividing by (1 - T)2*"2 we have

"Skfr--
*Ma/* e'(r)

(1 - T)29     3/4<Jm<i   (1 - T)2q-X+S"      (1 - r)2*"2

We form the indefinite integral of each side to obtain

y    lanl  ■*       _ _ _^0_

«      « + 1 (2<? - 1)(1 - T)2"'1

+    s     _Ü_+ 0f_!_Ï
3/4^<i (29 - 2 + ifl)(i - r)2*-2+J-      \ (i - T)2"-2+yAr

where the error estimate is obtained by an integration by parts. On substituting

T = e-' the formula is alternately given as

'2
klV(n+1)

n + 1 (2^-1)^-'

2     _^_+ o(      1      V
£<,    (2fl - 2 +  *„)f2*-2 + i" \ ,2,-2 + 3/4 j3/4<^<i   (2q - 2+ sj

The hypothesis of Patterson's Tauberian theorem are now satisfied and the conclu-

sion follows [6].

We note that formulas similar to the above for q = 1 appeared in [5]. The origin

of U can be made to correspond to an arbitrary point of the Riemann surface U/ G

be replacing G by a conjugate. The resulting effect on the Taylor coefficients of ^

is described by the factor <i>M(0) appearing in the expression for aM (see (4)).

The author would like to thank the referee for his gentle prodding and valuable

suggestions.
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