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SMOOTHNESS AND WEAK* SEQUENTIAL COMPACTNESS

JAMES HAGLER1 AND FRANCIS SULLIVAN

Abstract. If a Banach space E has an equivalent smooth norm, then every

bounded sequence in E* has a weak* converging subsequence. Generalizations of

this result are obtained.

1. Introduction. This paper examines some connections between geometric condi-

tions on a Banach space E and the following condition on E:

(w) Every bounded sequence in E* has a weak* converging subsequence.

Our main result is:

Theorem 1. Suppose F is a closed subspace of the Banach space E, F has (w) while

E fails («). Then E/F has no equivalent smooth norm. In particular, a smooth

Banach space has («).

Recall that the norm || • || on £ is smooth if for every e E E, e =£ 0, there is a

unique/ E E* with ||/|| = 1 and/(e) = ||e||. Of course, E has (u>) if and only if the

unit ball of E* is weak* sequentially compact.

The first indication that fairly "weak" geometric conditions on E might imply

(«) comes from the following result of Stegall [15]: A weak Asplund space has (u).

(See §3 for a definition of weak Asplund space.) Previously, Asplund [1] had shown

that if E* is strictly convex then E is weak Asplund, and consequently, by StegalFs

result, E has (w). An elementary duality computation shows that if E* is strictly

convex then E is smooth, but counterexamples to the converse have been given by

Klee [8] and Troyanski [16]. It is not known if every smooth space is weak

Asplund. However, Theorem 1 does provide a partial answer to Stegall's question

about the general relation between differentiability conditions and property (u) on

a Banach space E. Also, using some ideas from [5] and [6], J. Bourgain has

constructed a closed subspace X of /°° with c0 c X such that X fails (w) while

y = X/c0 has («). This shows that property (<o) is not a three-space property.

Moreover, this combines with Theorem 1 to show that y is a Banach space having

(w) while (1) y has no equivalent smooth norm, and (2) Y is not a weak Asplund

space. (Assertion (1) follows directly from Theorem 1 while the proof of (2) uses

Lemma 3 below.) We include this example with Professor Bourgain's kind permis-

sion.
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The proof of Theorem 1 is based on two ideas. The first is a completeness

argument of Leach and Whitfield [10] (cf. also John and Zizler [7]) which is similar

to the proof of the Bishop-Phelps Theorem [2]. (In fact, if the continuum hypothe-

sis is assumed, an easy proof that a smooth space has («) follows directly from the

Bishop-Phelps Theorem.) The completeness argument shows that if some equiv-

alent norm for E is strongly rough (see §2) then no equivalent norm for E can be

smooth.

The second idea is based on a diagonalization technique used by Stegall [15] to

prove that a weak Asplund space has (w). Larman and Phelps [9] gave a refinement

of Stegall's argument which shows that E has (u) if each nonempty weak* compact

convex subset of E* has a "weak* Gs extreme point". A modification of the

Larman-Phelps argument is used in the proof of Theorem 1.

§2 contains definitions and the proof of Theorem 1. In §3, we sketch the easy

proof using the continuum hypothesis that a smooth space has («). In addition, we

discuss briefly our results in relation to Gâteaux differentiability of convex func-

tions on E, and present the construction due to J. Bourgain mentioned earlier.

We wish to thank the referee for showing us a proof of Lemma 3 which

illuminates clearly its connection with the Bishop-Phelps theorem, as well as for

pointing out that our original proof of Theorem 1 could be recast in terms of weak*

Gs extreme points.

2. Bounded sequences in E*. Recall that smoothness of the norm in E is

equivalent to saying that, for each ||jc|| = 1 and all>- G E,

lim   ll* + (y|| + l|x-»||-2_a
t-M+ t

Following Leach and Whitfield we say that the norm in E is strongly rough if it

uniformly avoids being smooth; e.g. there is an e > 0 such that for each ||x|| = 1

there is a || v|| < 1 with

N* + <y|| + II* - ty\\ - 2hm sup *-¿2-!J-s-a-> e.
f-»0+ t

The following characterization is implicit in the work of Leach and Whitfield [10]

and John and Zizler [7] and will be used in the sequel.

Lemma 2. The norm in E is strongly rough if, and only if, there is an e > 0 such

that for each z G E there is a ||c|| = 1 satisfying

\\z + tv\\ > \\z\\ + \t\e   for all real t. (*)

Proof. Suppose that the norm in E is strongly rough and let ë be the "degree" of

roughness occurring in the definition. Let e = e/4 and suppose z G E is arbitrary.

If z = 0 then any ||u|| = 1 will do for (*). Otherwise let x = z/||z||. Using a simple

duality argument and the definition of strongly rough we get that there are

fig G E*,  11/11 = 1 = \\g\\, such that fix) = 1 = g(x) while for some ||v|| = 1,

(f-g)(y)>'e-
Let w = v - (((/ + g)(y))/2)x and notice that ||w|| < 2. If now v = w/\\w\\ and

t > 0 then
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||z + ipg >f(z) + tf(v) = |1*|| + '2,^1

> 11*11 + '^ > M + 1*1«.

The case for / < 0 is handled similarly.

The converse is clear.   Q.E.D.

It is obvious that, for T uncountable, the norm in / l(T) is strongly rough and it is

not hard to show that l°°/c0 has an equivalent strongly rough norm. It is known

that neither of these spaces can be renormed for smoothness. The following lemma

shows that this is a general phenomenon. The original proof was due to Leach and

Whitfield and the enlightening simplification given here has been supplied by the

referee.

Lemma 3. // E has an equivalent smooth norm, then E has no equivalent strongly

rough norm.

Proof. We show first that if || • || is an equivalent strongly rough norm for E and

p: E -» R is any Gâteaux differentiable function with p(0) = 0, then the nonempty

set S = {x\p(x) < ||jc||} is unbounded. Assume that S is bounded and define a

partial order on E by x >y if e||x — v|| < \\x\\ — \\y\\. Here e > 0 is from (*) in

Lemma 2. As in the proof of the Bishop-Phelps theorem and its generalizations

[11], we can use completeness to obtain a maximal x0 E S. Since || • || is strongly

rough there is a || v|| = 1 such that for all t, \\x0 + ty\\ > \\x0\\ + |i|e. In other

words, for all t, xQ + ty > x0. Since x0 is maximal x0 + ty & S and so if t ¥= 0,

p(*o + ty) > \\xo+ D'il- Combining this with the fact that p(x^) < \\x0\\ we have

that, for all t,

p(*o + ty)~ p(*o) > ll*o + D'il - ll*oll > £M-

This contradicts the linearity of p'(x0).

If E has an equivalent smooth norm | • |, then there is a constant M with

||;c|| < M\x\ for all x. On the other hand, if we define p(x) = \x\2, then p is

Gâteaux differentiable and p(0) = 0. Thus, {x\ \x\2 < M\x\] D {x\ \x\2 < ||jc||} is

unbounded (in the norm || • ||), which contradicts the equivalence of || • || and | • |.

Q.E.D.
Following Larman and Phelps [9] we say that E* has <o* Gs extreme points if

every nonempty weak* compact convex K c E* has an extreme point which is a

Gs point in the relativized weak* topology on K. It is easy to show that if E has an

equivalent smooth norm, then E* has weak* Gs extreme points. Indeed, let K be a

nonempty weak* compact convex subset of E*. Then K has weak* faces of small

norm diameter, i.e. for each e > 0, there is an ||jc|| = 1 such that diam{/ E K\f(x)

= sup{g(x): g E K}} < e. Once this is shown, then we may select a sequence

K d K{ d K2 D ■ ■ ■ where each K¡ is weak* compact and convex, diam(/Q <

1/j* and K¡ is a weak* face of K¡_y It is immediate that D,A) is a weak* Gs

extreme point of K.



500 JAMES HAGLER AND FRANCIS SULLIVAN

To establish the assertion about small faces, suppose that K does not have weak*

faces of diameter less than e. Then if B* is the unit ball of E*, the set A = B* + K

— K is weak* compact, convex, balanced and has nonempty norm interior. It is

not hard to check that the Minkowski functional for A defines an equivalent norm

on E* dual to a strongly rough norm on E. But Lemma 3 shows that this cannot

happen, since E has an equivalent smooth norm.

Remark. Much of the proof of Theorem 1 is a repetition of Proposition 12 of [9],

where it is shown that E has (w) if E* has weak* Gs extreme points. We include this

for completeness.

Proof of Theorem 1. Suppose (gn) is a bounded sequence in E*. Since F has

(w), there is a subsequence (h„) of (g„) and an/iGP such that h„\F -» h weak* in

F*. Let /be a Hahn-Banach extension of h to E. If we define/, — hn— f, then (/„)

is a bounded sequence in E* and every weak* accumulation point of {/„: n G TV}

is in Fx.

Following the notation of [4], we symbolize (/„) by its ordered set of indices, N.

Subsequences can then be indicated by M, L c N, etc. Here, for instance, if

M = {«„ n2, . . . }, then M "stands for" the subsequence (/ ) of (/„). The set of

weak* accumulation points of the subsequence M will be denoted by M'.

Now, let K =co*(A/'). Since E/F has an equivalent smooth norm, the remarks

above and the weak* continuous isometry between (E/F)* and Fx yield a point

g G N' which is a weak* Gs extreme point of K. Thus there exist weak* open in E*

sets £/, D U2 D • • • such that Ut* c Ui_l and n,(t/, n K)= {g}. Pick sub-

sequences N u TV, D N2d ■ ■ • such that N, c U, for each /'. Let (/^) be a

subsequence of (/„) satisfying/^ G N¡ for each i. Then

00 oo

{/„: » e TV}' c fi Ni c H Cut* nK) = {g}.
1=1 (-1

So/,, converges weak* to g. Thus, the subsequence (hj of (g„) converges weak* to

f + g. This completes the proof of Theorem 1.

3. Remarks. Let us first sketch the simple proof (assuming the continuum

hypothesis) that a smooth space has (w). Observe that if £ is smooth, then so is

every subspace, and if E fails (w), then there is a subspace E0 of E of dimension

(= density character) c with E0 failing («). To see this, let (/„) be a bounded

sequence in E* with no weak* converging subsequence, and for each subsequence

M c TV, pick xM G E such that limneAi/n(xM) does not exist. Then the subspace

E0 of E generated by the set (xM: M is a subsequence of TV} has the desired

properties.

So we may assume that E is smooth, fails (w), and has dimension c. By

smoothness and the Bishop-Phelps Theorem, the norming map n: E -> E* defined

by n(e)(e) = ||e*||2, ||n(e)|| = ||e|| is one-to-one and has norm dense range. Thus,

card(7i*) < (card(/j(P)))K° = (card^))"0 = c"° = c, since a Banach space of dimen-

sion c has cardinality c.
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On the other hand, by the Cech-Pospisil Theorem [3], any compact space which

is not sequentially compact has cardinality > 2"'. Assuming the continuum hy-

pothesis, and applying the Cech-Pospisil Theorem to B*, we have that card(is*) >

2C. This is a contradiction.

Remark. We do not know if, even with the continuum hypothesis, our results

about quotients can be deduced directly from the Bishop-Phelps Theorem.

We now briefly connect our results with the notion of Gâteaux differentiability.

Recall that a Banach space E is called a weak Asplund space if every continuous

convex function on E is Gâteaux differentiable at least at a dense Gs subset of its

domain. As mentioned above, Stegall proved that a weak Asplund space has (w).

Extending this, Phelps [12] proved that a Banach space has (to) if every continuous

guage on E is Gâteaux differentiable at at least one point. Our main result can be

restated as follows: E has (w) if every equivalent norm || • || on £ is e-differentiable

at some point, i.e. if for every e > 0, there exists an ||x|| = 1 such that for all

IMI < i.

,. II* + ty\\ + ||*- »|| -2 ^hm sup --—-—-< e.
/->o+ t

At present, we do not know if this implies that every equivalent norm on E has a

point of Gâteaux differentiability. Of course, the existence of a strongly rough

norm is precisely the condition that this norm is uniformly non-Gâteaux differentia-

ble at every point.

Finally, we outline the example of Bourgain mentioned in the Introduction. (This

is essentially the same example given by Haydon in [6] for another purpose.) Let TV

denote the set of natural numbers. The following is proved in [4].

Lemma. There is a well ordered set (I, <) and a collection (Ma)aeJ of infinite

subsets of N such that (1) if a < ß then either Mß c0 Ma or Mß n Ma =a 0; and

(2) if M c N is infinite, then there is an a El I such that both M n Ma and M\Ma

are infinite.

(We say K ca L if K\L is finite and K n L =a 0 if K n L is finite.)

For each a, let <pa be the indicator function of Ma, i.e., <pa(n) = 1 if n E Ma and

0 otherwise. The Banach space X is the closed subspace of /°° spanned by {<pa:

a E /} u c0. Let/ E X* be defined by/„(£) = £„ for £ = (&) E X. Since c0 c X,

ll/JI = 1 for each n, and a simple calculation (as in [4]) using property (2) of the

lemma shows that (/„) has no weak* converging subsequence. Thus, X fails (w).

We now show that X/c0 has («). Suppose (gn) is a norm-one sequence in

(X/cq)* with no weak* converging subsequence. Let <pa = <pa + c0 E X/c0. Then

since T = (<pa: a G 1} generates X/c0, it follows that (g„\T) is a uniformly

bounded sequence of functions on T with no pointwise converging subsequence.

Hence, by the results of [13] (cf. also [14]) there exists a subsequence (/„) of (gn)

and real numbers r and 8 > 0 such that (An, Bn) form an independent family of

pairs of sets, where An = {t E T: fn(t) > r + 8) and B„ = {/ E T: f„(t) < r). For

fixed n, pick
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( n a) n f n   b],
\ i-l / \,-2"-' + l        /

t2 g I n a,\ n
2"-'

n   ü,
i»2"-2+l

n
3-2""2

n  At
1-2"-' + 1

n   5,
i-3-2"-2+l       J

>„ g Ax n P2 n ^3 n • • • r\Ar_x n P2-

Now, each /, = 9^ for some a, G /. A calculation as in [13] shows that

2 ö,<P«,>5£

for all scalars a,.a„, i.e. that the set (<p^: 1 = 1, ...,«} is 5/2 equivalent to

the usual basis of /„'.

Notice, however, that if Mß , . . . , Mßk are pairwise almost disjoint then

k

2 <WA= max|a,|,

while if Mßi d t Mß^< D0 Mßk, then

2  <W¿= max 2   <*>

Hence for k sufficiently large (depending on 8) neither of these sets can be

5/2-equivalent to the usual basis of l¿. On the other hand, for n sufficiently large

(say n > kk) one of these two situations must occur for any choice of n cosets

i>a> • • • » 'Pa,- Thus, no n elements subset of {<pa: a G 7} can be 5/2 equivalent to

the usual basis of /„'. This contradiction shows that X/c0 has property (w).

Remark. Larman and Phelps [9] prove that E* having weak* Gs extreme points

is a three space property. Since X fails (to) we have that (X/c0) has (w) but (X/c0)*

does not have weak* Gs extreme points.
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