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A REMARK ON THE GROWTH OF SOLUTIONS

OF FIRST ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS

SH. STRELITZ

Abstract. Two theorems on the growth of complex- and real-valued solutions of

first order algebraic differential equations are proven.

1. Consider the algebraic differential equation

y'2 = ay3 + by2 + cy + d

with certain complex constants a, b, c, d. It is known (see [3] and other references

cited there) that given any comparison function this equation has complex-valued

solutions whose absolute values grow more rapidly than the comparison function.

In other words, there is no majorant expressed in terms of the coefficients of the

equation for the solution of the differential equation on the x axis.

We consider the equation

F(x,^y)-o (i)

with real x and complex-valued (or real-valued) y, where F is a polynomial in

respect to>> and>>'. Some estimates of the growth of solutions under corresponding

conditions imposed on (1) were found in [1], [2].

We show below that for equations from a certain large subset E of equations of

type (1) a majorant for their solutions on the x axis can be built.

2. In order to formulate the conditions defining the set E we rewrite (1) in the

following way:

F0[x,y, £) = ¿  P¡x, £y»-J = 0 (2)

with

mj

Pj(x, u) =  2   FJIAx)um'~\      j = 0, 1, 2, 3, ... , n. (3)
*7-0      '

Definition. A differential equation (2) with complex-valued coefficients Fm,(x)

belongs to E if and only if:

(1) m0 > my,j = 1, 2, . . ., n (see (3)),

(2) |Foo(.x:)| > 0, x G [0, oo), and

(3) FkJ(x) are continuous functions on [0, oo) for all possible k and7.
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Theorem 1. Let y(x) be a differentiable complex-valued solution of the differential

equation (2) which belongs to E on the ray [x0, oo). Then

y(x) = o(exp f V(t) dt) (4)

where

V(x) =       max
0<kj<m)

j = 0,\,2, ...,n

'>*/

Foo(x)
.1   • (5)

We will also prove:

Theorem 2. Let

n mJ

F(x,y,y') = 2 y"-J 2   FjJx)/^-^ = 0 (6)
/-0 *,-0

be given with continuous functions Fjk(x) on [0, oo) and

\Fqo(x)\ > a0 > 0,        \F0mo(x)\ > a0 > 0,       a0 = Const,

m0 > my,   j = 1, 2, . . . , n.      (7)

Tftert for each differentiable real-valued solution y(x) on the ray [x0, oo) one has

y(x) = O(V0(x)) (8)

where

V0(x) =    Sup    \Fjk(x)\. (9)

0<j<n

We will prove both of these theorems in the following sections of this paper.

3. Proof of Theorem 1. Because of the condition (2) in the definition of the set E

we can put F^x) = 1. Lety(x) be a solution of (2) defined on [x0, oo). We replace

x by t according to the equality

/ = C V(x) dx (10)

where V(x) is defined in (5). Then dy / dx = V(x)dy / dt and

FÁx,y, y-)=t y"-J 2   FJkj(x)V^(x)i^YJ  ^ = 0.
\      y i   j=o      kj=o \ y i

Dividing the last equation by Vma(x)y" we obtain

k-o \y i 7-0     kj=o \y i

(ii)
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Note now that

and

1 Ok,

Vk»o) " \ V n*)
< i

Vm°-mJ+kj(x)   *   Vkj(x)

Fjk^)\
< 1.

(12)

(13)

Thus the coefficients of (2.3) are bounded by 1.

4. Case 1. Suppose first that there is an infinite sequence of points tp^co such

that:

(a) t is a local maximal point of the function

tp(t) = \n\y{t)\/t   and

(b)

lim  ff(í) = lim  <p(t ) = oo
p—»00 ^

(if lim(_>oo(p(0 < oo then Theorem 1 is correct).

Under these assumptions

(14)

(15)

y(tP)\' i _ MAO\ _ r. ̂  \yW   ln\y(0\
[y(tP)\ ' <•>       t,

<p'(0 = = 0=>
y(<P)\

t.

and

yVP)

y(ü

\y('p)\'     < v
00.

p—>oo

= <p(0      (16)

(17)

Since \y'/y\ > 1 at tp, it then follows from (11) and (17) that

,m-jm„        m0

-2
y-i

v  _L    JL
ft bK   M

and since \y(tp)\  -*   oo one has (1 + o(\))\y'/y\m<> < 0. The last inequality is
/>—»00

impossible. Hence in (15) one must have

lim  <p(t) < C < oo => lim <p(/) = limÎT^ ~,A _ ÎT^T   H.KOI <C
/7—»00

where C is a certain constant dependent on the solution ^(x) and satisfies

ln|^(i)| < C't =» ln| v(x)| < C[* KO) rfx,
*0

which completes the proof of Theorem 1 for Case 1.

Case 2. (¡p(?)|oo, í > t0, t —* oo. In this case one has

'lb(OI        '    1 '        b(OI
/(')
.KO
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so that \y'(t)/y(t)\   -»   °°. Repeating the same considerations as in the last
t—»00

paragraph we conclude that <p(t) < C which completes the proof of Theorem 1.

5. Proof of Theorem 2. The proof of this theorem is similar in its method to the

proof of Theorem 1. We substitute now x for / from / = /* V0(x) dx with

V0(x)=    Sup   \Fjk(x)\.
0<kj<mj

0<j<n

We assume F^x) = 1 and get:

n mJ F¡k (x)

2    2    „    *'       y'"»-y-0 (18)

where, for ally and kJy

FJkj(x)

VS'°-m'+kix)
< 1. (19)

(a) Suppose there is a sequence tp\oo such that, for each p, \y(tp)\ is a local

maximal value and

\im\y(tp)\ = ïhn~ \y(t)\. (20)

Theny'(tp) = 0 and from (18) and (19) it follows that

\y{tp)\"<c^\yk(tp)\
k = 0

with a certain constant C > 0. If \y(tp)\ < 1 then \y(x)\ = 0(1). Suppose

instead that |y(tp)\\co. Then for p large enough \y(tp)\" < Cn\y(tp)\"~x and

(1 + o(\))\y(tp)\" < 0. The last inequality is impossible. Thus in case (a) one has

y(x) = 0(1).

(b) Suppose now v(i)Too, r > <0, r-> oo. If \y'(t)\ < C0 < oo then \y(t)\ < C0.

Hence y(t) = 0(t) and the theorem is proved. Assume therefore that there is a

sequence ^foo with v'(^)Too. From (19) we have:

m°       F0k(x) «     i      m'       Fik(x)

k% vm°+k°(x) fix yJ k% vm°-^

and for t = tp with p large enough one has

m0 1

\y'(tP)r - Sl/m"y(',)l < |7(^I^""0WI =»0 + °(1))b'm°(',)l < o.

But this inequality is impossible. Consequently v'(0 < C.

(c) If v(f)|-oo then by means of the transformation y = -z we reduce this case

to case (b), which completes the proof of Theorem 2.
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