
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 78, Number 4. April 1980

MONOTONE ITERATION AND GREEN'S FUNCTIONS

FOR BOUNDARY VALUE PROBLEMS

P. W. ELOE1 AND L. J. GRIMM2

Abstract. An iteration scheme is given for approximating solutions of boundary

problems of the form Ly = fix, y), Ty(x) = r, where L is an nth order linear

differential operator, / is continuous and T is a continuous linear operator from

C~\I) into R". The scheme is based on the condition that the Green's function

G(x, s) for the associated linear problem Ly = 0, Ty = 0 exists and has sign

independent of s.

1. Introduction. Let n > 1, let 7 = [a, b] be a real interval, let a = xx < x2

< • • ■ < xk = b, let px(x),p2(x), . . . ,p„(x) be continuous on I, and define the

linear differential operator L by

Ly = /"> + px(x)yC-" +■■■ +Pn(x)y. (1.1)

A. Ju. Levin (see [1]) has obtained the following result.

Theorem L. Let L and I be as above, and suppose that L is disconjugate on I.

Then the Greerí s function G(t, s)for the k-point boundary value problem (BVP)

Ly = 0, (1.2)

/'>(*,) = 0,       i - 0,.... n, - \J - 1,..., k, (1.3)

where 2 n- = n, satisfies the inequality

G(x, s)(x - xx)"l(x - x2)"2.(x - xk)nk > 0,       xx < s < xk. (1.4)

For our purposes, the importance of Levin's theorem is that in this instance the

following condition holds.

Condition S. There exists a Green's function G(x, s) for the problem Ly = 0,

Ty = 0, and the sign of G(x, s) is independent of s.

We present here a bilateral iteration scheme, based on Condition S, which will

provide approximants to solutions of BVP's with linear boundary conditions. A. C.

Peterson has found [4] that complete disconjugacy is not necessary for this

condition to hold; he has recently shown [5] that it will also hold for certain ç-focal

problems, and we shall discuss these in the last section.

2. Linear boundary value problems. Let 7 be a real interval, let /: I xR^Rbe

continuous, and L be given by (1.1). Consider the BVP

Ly=f(x,y) (2.1)
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with boundary conditions

Ty(x) = r, (2.2)

where T: C~\l) -»Rn is a continuous linear operator, r is a given constant

vector. Assume that Condition S holds for the associated homogeneous problem

Ly = 0, Ty(x) = 0. Hence there exist subsets of /, /, and I2 such that

(i) / = /, u I2 (possibly / = /, or / = /^ and

(ii) G(x, s) has sign given by

G(x, s) < 0   for a < s < b, x E /„

G(x, s) > 0   for a < s < b, x E I2. (2.3)

Assume that there exists a constant M such that, for all (x,yx), (x, y^ in / X R,

\f(x,yx)-f(x,y2)\<M\yx-y2\. (2.4)

Further, suppose that there exist functions vx(x), wx(x) with piecewise continu-

ous n\h derivatives on /, such that

Tvx(x) = Twx(x) = r,   and such that, for x E /, (2.5)

Lvx -f(x,vx) + Ax(x) =ßx(x) < 0,

Lwx - f(x, wx) - Ax(x) = yx(x) > 0,

where

Ax(x) = M\vx(x) - wx(x)\. (2.6)

Let lr(x) be the solution of the problem Ly = 0, Ty(x) = r; existence of lr(x)

follows from linearity and uniqueness [2]. Construct the sequences {vm(x)} and

{wm(x)} as follows:

«U+iM = hix) + ¡G(x, s)[f(s, vm(s)) - Am(s)] ds,

*m+l(x) = ',(*) + fG(x, s)[f(s, wm(s)) + Am(s)] ds, (2.7)

where

Am(x) = M\vm(x) - wm(x)\,       m>\. (2.8)

Theorem 1. Let L and f be as above; let (2.4) and Condition S hold. Suppose that

there exist functions vx(x) and wx(x) satisfying (2.5), and define the sequences [vm(x))

and (wm(x)} by (2.7). Then there exists a solution y(x) of the BVP (2.1)—(2.2) such

that, for all m > 1,

«mW  > Vm+AX)  >y(x)  > wm+l(x)  > Wm(x), X E /„

vm(x) < vm+x(x) < y(x) < wm+x(x) < wm(x),       x E I2. (2.9)

Proof. Set um(x) = vm(x) - wm(x), m > 1. Note that ux(x) > 0 for x E /,,

ux(x) < 0 for x E I2, since Lwj = f(x, vx) — f(x, wx) - 2Ax(x) + ßx - y, < 0;

hence ux(x) = /, G(x, j)L«,(í) í& has sign opposite to that of G. The rules for

constructing the sequences [vm(x)} and {wm(x)} imply, similarly, that
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«m-iW = [g(x, s)[f(s, vm(s)) -f(s, wm(s)) - 2M\vm(s) - wm(s)\] ds
JI

and, from (2.4), we have that, for each m > 1,

"m+iW > - f G(x, s)M\um(s)\ ds>0,       xelx, (2.10a)
Ji

and

"m+iW < - f G(x, s)M\um(s)\ ds < 0,       x G 72. (2.10b)
Ji

Hence, for each m > \,

vm >wm,   x G 7,;       vm <wm,   x<E I2. (2.11)

To show the monotonicity of the sequences {vm(x)}, {wm(x)} on 7, and I2, note

that /?, = Lvx - Lv2, y, = Lwx - Lw2, and set ßm = Lvm - Lvm+X, ym = Lwm -

Iw„+i. Using (2.11), we can write

wm+l)>     x G 7„

wm+i). * e 72,

«Wl). * 6 7„

e»+i).   * 6 ^2-

he inequahties

(2.12)

/,, p, > 0 on 72.

Similarly, 5, > 0 on 7„ 8X < 0 on 72. By (2.12), y2 > 0, ß2 < 0 on 7, and, by

induction, for each m > 1, pm < 0 on /,, pm > 0 on 72; 5m > 0 on /,, 8m < 0 on 72,

and ym > 0, /3m < 0 on all of 7. Hence om+1 < oM and wm+x > wm on Ix, vn+x > vm

and wm+x < wm on 72, and we have obtained the inequalities involving the ü's and

w's in (2.9). It remains to show that a solution y(x) lies between the ü's and w's. To

prove this, note first that, on Ix and on 72, the sequences {vm(x)} and {wm(x)} are

monotonie, bounded and equicontinuous. By Ascoli's theorem, they have uniform

limits v(x) and w(x) with v(x) > w(x) for x G /,, v(x) < w(x) for x G I2. It

follows from (2.7) that

Lv(x) = fix, v) - A(x),       Lw(x) = fix, w) + A(x), (2.13)

where A(x) = M\v(x) — w(x)\. Note that A(x) is continuous and nonnegative and

that Tv(x) = Tw(x) = r.

ß     ( ) = ( ft*' Vm^ ~ ft*' Vm+X^ ~ M(Vm ~ Vm+l) + M(Wm ~

Pm + ÁX)      \f(x,vm)-f(x,vm + x) + M(vm - vm+x) - M(wm -

(  ) = Í ft*' W"^ ~ ft*' Wm + ̂  ~ Mi<Wm ~ Wm + 1^ + M^Vm ~

Ym+lW      [fix, wm) - fix, wm + x) + M(wm - wm + x) - M(vm -

Setting 8m = vm - vm+x, pm = wm - wm+x, we obtain, using (2.4), 1

ßm+1W < M\8m\ - M8m + Mpm, x G 7„

ßm+M < M\8m\ + M8m - MPm, x G 72;

ym+iW > - M\pm\ - Mpm + M8m,       x G 7„

Tm+i(«) > - M\pm\ + Mpm - M8m,       x G 72.

Since Lpx = yx and y, > 0, with Tpx = 0, it follows that p, < 0 on
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For each function y(x) E C(I), set

X E/„

X E I2,

A _ Ä

and define F(x, y(x)) = f(x, y(x)). The function F is continuous and bounded on

/ X R. It follows from the Schauder fixed point theorem that the problem

Ly = F(x,y),       Ty(x) = r

has a solution y(x). We now show that this solution satisfies

v(x) > y(x) > w(x),       x E /,,

v(x) < y(x) < w(x),       x E I2,

and hence that y(x) is a solution of (2.1)-(2.2). Let D be the compact domain

bounded by v(x), w(x) and the lines x = a and x = b. Set z(jc) = w>(.x) — y(x).

Then

Lz(x) = Lw(x) — Ly(x)

= /(*, w(x)) + M\v(x) - w(x)\ - f(x,y(x)) > 0

since (2.4) holds. Furthermore, since Tz(x) = 0, we have z(x) < 0, x £ /,, z(x) >

0, * E /2. Similarly, setting z(x) = ü(jc) — y(x), we obtain z(jt) > 0, x E /„ z(x)

< 0, x E I2. Hence (x, y(x)) lies in D for all x E /, and the proof is complete.

Remarks, (i) It is necessary only that the bound (2.4) hold for all (x,y) E Dm,

where Z)(1) is the compact domain bounded by the curves vx(x), wx(x) and the unes

x = a and x = b.

(ii) Set G = maxxe/|/7 G(x, s) ds\. Then if 2MG < 1, and if \f(x, y)\ < B, for

some constant B for all (x, y) £ / X R, the functions vx and w, can be chosen as

t),(x) = /r(x) - J~2MGJ G^X' ̂  **

(iii) In case / has certain monotonicity properties, the Lipschitz continuity is not

needed, and the iteration can be simplified by taking A¡(x) = 0 for all i > 1.

Furthermore, the functions vx and w, can be readily obtained from G(x, s) and

lr(x) as before, but now without the requirement that 2MG < 1. Inspection of the

proof of Theorem 1 leads to the following result.

y(x) =

v(x) if y(x) > v(x)             -,

y(x) iiv(x) >y(x) > w(x)(

w(x) if y(x) < w(x)            J

v(x) iiy(x)<v(x)              j

y(x) if v(x) < y(x) < w(x)\

w(x) if y(x) > w(x)            J
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Theorem 2. Let L and T be as in Theorem 1. Let fix, y) be continuous on I X R,

and be monotone decreasing in y for each x G I and monotone increasing in y for

each x G 72. Then if there exist functions vx(x) and wx(x) satisfying

vx > wx,   x G /,;       t>, < wx,   x G I2,

Tvx(x) = Twx(x) = r,   and such that, for x G I,

Lvx - fix, vx) = ßx(x) <0,

Lwx - fix, wx) = yx(x) > 0,

and if the sequences {vm(x)}, {wm(x)} are defined by

fm+i(*) - W*) + / G(x> s)fts> Vm(S)) *»

H'-.+iW = ¡A*) + ( G(x, s)f(s, wm(s)) ds, (2.14)

these sequences will converge to solutions v(x) and w(x) of the BVP (2.1)—(2.2), and

«m(*) > Vm+l(x)  > V(x)  > W(x)  > Wm+x(X) > Wm(X), X G 7„

»mi*) < vm+x(x) < v(x) < w(x) < wm+x(x) < wm(x),       x G 72.

Further, any solution y(x) of the BVP (2.1)—(2.2) which lies between vx and wx will

also  lie between  v and w. In  case  |/(jc, _y)| < B for some constant B for all

(x,y) G I X R, the functions vx and wx can be chosen as

vx(x) = /,(*) - B f G(x, s) ds,

"M = lr(X) + B( G(X> S) ds-
Jl

3. Applications. We consider two applications.

(i) Let L in (2.1) be disconjugate on 7, and suppose that the boundary conditions

(2.2) are the conjugate boundary conditions

yW(xj) = c0,       0 < i < nj_x,j =\,...,k,

where 2 /j: = n, a = xx < x2 < ■ ■ ■ < x„ = b, and c¡j are constants. Levin's in-

equality (1.3) shows that Ix will be the union of all subintervals [Xp xJ + x] of 7 such

that nj+x + ■ ■ ■ +nk is odd and 72 will be the union of all such subintervals such

that the same sum is even,

(ii) Consider the ?-focal BVP

Ly=y^-Xp(x)y=f(x,y) (3.1)

with boundary conditions

/')(fl) - c„       i - 0, 1.q - 1,

yV>ib) = Cj,      j=q,...,n-l, (3.2)
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where p(x) > 0 is continuous, X = ± 1 and the equation Ly = 0 is disfocal on /,

i.e., has no nontrivial solution y(x) such that each of the derivatives y(k\x),

k = 0, I, . . ., n — 1, vanishes at least once in / (see [3]). Peterson [5] has de-

termined the Green's function for the associated homogeneous problem and has

shown that its sign is determined by the inequality

(-l)n_<7G(x, s) > 0   for all (x, s) E (a, b) X (a, b).

Hence in this case / = /, if n — q is odd; / = I2 if n — q is even.

Remarks, (i) Because of the general form of the boundary conditions (2.2), we

require that the initial approximants vx and wx satisfy the boundary conditions. For

the conjugate A>point BVP, this requirement can be relaxed somewhat. A modifica-

tion of the iteration (2.7) or (2.14) then leads to the conclusions of Theorem 1 or

Theorem 2, if one begins with functions vx and wx satisfying the boundary

conditions (3.1)—(3.4) of Theorem 3.1 of [6].

(ii) Theorems 1 and 2 remain valid under Carathéodory conditions, in the case of

Theorem 1 under the hypothesis that (2.4) holds for (x, y) E / X R for almost all

x. Theorem 2 extends a result of V. Seda [7] to the case of general linear boundary

conditions.

(iii) For certain boundary problems, not only the sign of Green's function

G(x, s), but also the signs of some of its derivatives dr'G(x, s)/dxr',p = 1, . . . ,p0,

rp < n, are independent of s (see, for instance, [5]). (As an example, for the problem

v" = 0, v(0) = a, y'(\) = b, G(x, s) < 0, dG(x, s)/dx < 0.) In such cases, Theo-

rems 1 and 2 can be extended in a natural way to problems of the form

Ly = f(x, y, /">, . .., y(r'o>), Ty(x) = r.
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