MONOTONE ITERATION AND GREEN'S FUNCTIONS FOR BOUNDARY VALUE PROBLEMS

P. W. ELOE¹ AND L. J. GRIMM²

ABSTRACT. An iteration scheme is given for approximating solutions of boundary problems of the form Ly = f(x, y), Ty(x) = r, where L is an nth order linear differential operator, f is continuous and T is a continuous linear operator from $C^{n-1}(I)$ into \mathbb{R}^n . The scheme is based on the condition that the Green's function G(x, s) for the associated linear problem Ly = 0, Ty = 0 exists and has sign independent of s.

1. Introduction. Let $n \ge 1$, let I = [a, b] be a real interval, let $a = x_1 < x_2 < \cdots < x_k = b$, let $p_1(x), p_2(x), \ldots, p_n(x)$ be continuous on I, and define the linear differential operator L by

$$Ly = y^{(n)} + p_1(x)y^{(n-1)} + \cdots + p_n(x)y.$$
 (1.1)

A. Ju. Levin (see [1]) has obtained the following result.

THEOREM L. Let L and I be as above, and suppose that L is disconjugate on I. Then the Green's function G(t, s) for the k-point boundary value problem (BVP)

$$Ly = 0, (1.2)$$

$$y^{(i)}(x_i) = 0, \quad i = 0, \dots, n_i - 1, j = 1, \dots, k,$$
 (1.3)

where $\sum n_j = n$, satisfies the inequality

$$G(x, s)(x - x_1)^{n_1}(x - x_2)^{n_2} \cdot \cdot \cdot \cdot (x - x_k)^{n_k} \ge 0, \quad x_1 < s < x_k.$$
 (1.4)

For our purposes, the importance of Levin's theorem is that in this instance the following condition holds.

CONDITION S. There exists a Green's function G(x, s) for the problem Ly = 0, Ty = 0, and the sign of G(x, s) is independent of s.

We present here a bilateral iteration scheme, based on Condition S, which will provide approximants to solutions of BVP's with linear boundary conditions. A. C. Peterson has found [4] that complete disconjugacy is not necessary for this condition to hold; he has recently shown [5] that it will also hold for certain q-focal problems, and we shall discuss these in the last section.

2. Linear boundary value problems. Let I be a real interval, let $f: I \times \mathbb{R} \to \mathbb{R}$ be continuous, and L be given by (1.1). Consider the BVP

$$Ly = f(x, y) \tag{2.1}$$

Received by the editors April 30, 1979.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 34B10; Secondary 34B27.

¹MASUA Traveling Scholar.

²Research supported by NSF Grant MCS77-28395.

with boundary conditions

$$Ty(x) = r, (2.2)$$

where $T: C^{n-1}(I) \to \mathbb{R}^n$ is a continuous linear operator, r is a given constant vector. Assume that Condition S holds for the associated homogeneous problem Ly = 0, Ty(x) = 0. Hence there exist subsets of I, I_1 and I_2 such that

- (i) $I = I_1 \cup I_2$ (possibly $I = I_1$ or $I = I_2$) and
- (ii) G(x, s) has sign given by

$$G(x, s) \le 0$$
 for $a < s < b, x \in I_1$,
 $G(x, s) \ge 0$ for $a < s < b, x \in I_2$. (2.3)

Assume that there exists a constant M such that, for all (x, y_1) , (x, y_2) in $I \times \mathbb{R}$,

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|. \tag{2.4}$$

Further, suppose that there exist functions $v_1(x)$, $w_1(x)$ with piecewise continuous nth derivatives on I, such that

$$Tv_1(x) = Tw_1(x) = r$$
, and such that, for $x \in I$, (2.5)
 $Lv_1 - f(x, v_1) + A_1(x) \equiv \beta_1(x) \le 0$,
 $Lw_1 - f(x, w_1) - A_1(x) \equiv \gamma_1(x) \ge 0$,

where

$$A_1(x) = M|v_1(x) - w_1(x)|. (2.6)$$

Let $l_r(x)$ be the solution of the problem Ly = 0, Ty(x) = r; existence of $l_r(x)$ follows from linearity and uniqueness [2]. Construct the sequences $\{v_m(x)\}$ and $\{w_m(x)\}$ as follows:

$$v_{m+1}(x) = l_r(x) + \int_I G(x, s) [f(s, v_m(s)) - A_m(s)] ds,$$

$$w_{m+1}(x) = l_r(x) + \int_I G(x, s) [f(s, w_m(s)) + A_m(s)] ds,$$
(2.7)

where

$$A_m(x) = M|v_m(x) - w_m(x)|, \qquad m > 1.$$
 (2.8)

THEOREM 1. Let L and f be as above; let (2.4) and Condition S hold. Suppose that there exist functions $v_1(x)$ and $w_1(x)$ satisfying (2.5), and define the sequences $\{v_m(x)\}$ and $\{w_m(x)\}$ by (2.7). Then there exists a solution y(x) of the BVP (2.1)–(2.2) such that, for all $m \ge 1$,

$$v_m(x) \ge v_{m+1}(x) \ge y(x) \ge w_{m+1}(x) \ge w_m(x), \qquad x \in I_1,$$

$$v_m(x) \le v_{m+1}(x) \le y(x) \le w_{m+1}(x) \le w_m(x), \qquad x \in I_2.$$
 (2.9)

PROOF. Set $u_m(x) = v_m(x) - w_m(x)$, m > 1. Note that $u_1(x) > 0$ for $x \in I_1$, $u_1(x) < 0$ for $x \in I_2$, since $Lu_1 = f(x, v_1) - f(x, w_1) - 2A_1(x) + \beta_1 - \gamma_1 < 0$; hence $u_1(x) = \int_I G(x, s) Lu_1(s) ds$ has sign opposite to that of G. The rules for constructing the sequences $\{v_m(x)\}$ and $\{w_m(x)\}$ imply, similarly, that

$$u_{m+1}(x) = \int_{I} G(x, s) [f(s, v_{m}(s)) - f(s, w_{m}(s)) - 2M |v_{m}(s) - w_{m}(s)|] ds$$

and, from (2.4), we have that, for each m > 1,

$$u_{m+1}(x) \ge -\int_I G(x, s) M |u_m(s)| ds \ge 0, \quad x \in I_1,$$
 (2.10a)

and

$$u_{m+1}(x) \le -\int_I G(x,s)M|u_m(s)| ds \le 0, \quad x \in I_2.$$
 (2.10b)

Hence, for each $m \ge 1$,

$$v_m \geqslant w_m, \quad x \in I_1; \qquad v_m \leqslant w_m, \quad x \in I_2.$$
 (2.11)

To show the monotonicity of the sequences $\{v_m(x)\}$, $\{w_m(x)\}$ on I_1 and I_2 , note that $\beta_1 = Lv_1 - Lv_2$, $\gamma_1 = Lw_1 - Lw_2$, and set $\beta_m = Lv_m - Lv_{m+1}$, $\gamma_m = Lw_m - Lw_{m+1}$. Using (2.11), we can write

$$\beta_{m+1}(x) = \begin{cases} f(x, v_m) - f(x, v_{m+1}) - M(v_m - v_{m+1}) + M(w_m - w_{m+1}), & x \in I_1, \\ f(x, v_m) - f(x, v_{m+1}) + M(v_m - v_{m+1}) - M(w_m - w_{m+1}), & x \in I_2, \end{cases}$$

$$\gamma_{m+1}(x) = \begin{cases} f(x, w_m) - f(x, w_{m+1}) - M(w_m - w_{m+1}) + M(v_m - v_{m+1}), & x \in I_1, \\ f(x, w_m) - f(x, w_{m+1}) + M(w_m - w_{m+1}) - M(v_m - v_{m+1}), & x \in I_2. \end{cases}$$

Setting $\delta_m = v_m - v_{m+1}$, $\rho_m = w_m - w_{m+1}$, we obtain, using (2.4), the inequalities

$$\beta_{m+1}(x) \leq M|\delta_m| - M\delta_m + M\rho_m, \qquad x \in I_1,$$

$$\beta_{m+1}(x) \leq M|\delta_m| + M\delta_m - M\rho_m, \qquad x \in I_2;$$

$$\gamma_{m+1}(x) \geq -M|\rho_m| - M\rho_m + M\delta_m, \qquad x \in I_1,$$

$$\gamma_{m+1}(x) \geq -M|\rho_m| + M\rho_m - M\delta_m, \qquad x \in I_2. \tag{2.12}$$

Since $L\rho_1 = \gamma_1$ and $\gamma_1 > 0$, with $T\rho_1 = 0$, it follows that $\rho_1 < 0$ on I_1 , $\rho_1 > 0$ on I_2 . Similarly, $\delta_1 > 0$ on I_1 , $\delta_1 < 0$ on I_2 . By (2.12), $\gamma_2 > 0$, $\beta_2 < 0$ on I, and, by induction, for each m > 1, $\rho_m < 0$ on I_1 , $\rho_m > 0$ on I_2 ; $\delta_m > 0$ on I_1 , $\delta_m < 0$ on I_2 , and $\gamma_m > 0$, $\beta_m < 0$ on all of I. Hence $v_{m+1} < v_m$ and $w_{m+1} > w_m$ on I_1 , $v_{m+1} > v_m$ and $w_m < 0$ on I_2 , and we have obtained the inequalities involving the v's and v's in (2.9). It remains to show that a solution v(x) lies between the v's and v's. To prove this, note first that, on I_1 and on I_2 , the sequences $\{v_m(x)\}$ and $\{w_m(x)\}$ are monotonic, bounded and equicontinuous. By Ascoli's theorem, they have uniform limits v(x) and v(x) with v(x) > v(x) for $v \in I_1$, v(x) < v(x) for $v \in I_2$. It follows from (2.7) that

$$Lv(x) = f(x, v) - A(x), \qquad Lw(x) = f(x, w) + A(x),$$
 (2.13)

where A(x) = M|v(x) - w(x)|. Note that A(x) is continuous and nonnegative and that Tv(x) = Tw(x) = r.

For each function $y(x) \in C(I)$, set

$$\bar{y}(x) = \begin{cases} v(x) & \text{if } y(x) > v(x) \\ y(x) & \text{if } v(x) \ge y(x) \ge w(x) \\ w(x) & \text{if } y(x) < w(x) \\ v(x) & \text{if } y(x) < v(x) \\ y(x) & \text{if } v(x) \le y(x) \le w(x) \\ w(x) & \text{if } y(x) > w(x) \end{cases}, \quad x \in I_1,$$

and define $\hat{F}(x, y(x)) = f(x, \bar{y}(x))$. The function \hat{F} is continuous and bounded on $I \times \mathbb{R}$. It follows from the Schauder fixed point theorem that the problem

$$Ly = \hat{F}(x, y), \qquad Ty(x) = r$$

has a solution y(x). We now show that this solution satisfies

$$v(x) \ge y(x) \ge w(x), \qquad x \in I_1,$$

 $v(x) \le y(x) \le w(x), \qquad x \in I_2,$

and hence that y(x) is a solution of (2.1)-(2.2). Let D be the compact domain bounded by v(x), w(x) and the lines x = a and x = b. Set z(x) = w(x) - y(x). Then

$$Lz(x) = Lw(x) - Ly(x)$$

= $f(x, w(x)) + M|v(x) - w(x)| - f(x, \bar{y}(x)) > 0$

since (2.4) holds. Furthermore, since Tz(x) = 0, we have z(x) < 0, $x \in I_1$, z(x) > 0, $x \in I_2$. Similarly, setting $\hat{z}(x) = v(x) - y(x)$, we obtain $\hat{z}(x) > 0$, $x \in I_1$, $\hat{z}(x) < 0$, $x \in I_2$. Hence (x, y(x)) lies in D for all $x \in I$, and the proof is complete.

REMARKS. (i) It is necessary only that the bound (2.4) hold for all $(x, y) \in D^{(1)}$, where $D^{(1)}$ is the compact domain bounded by the curves $v_1(x)$, $w_1(x)$ and the lines x = a and x = b.

(ii) Set $G = \max_{x \in I} |f_I(x, s)| ds$. Then if 2MG < 1, and if |f(x, y)| < B, for some constant B for all $(x, y) \in I \times \mathbb{R}$, the functions v_1 and w_1 can be chosen as

$$v_1(x) = l_r(x) - \frac{B}{1 - 2MG} \int_I G(x, s) ds,$$

 $w_1(x) = l_r(x) + \frac{B}{1 - 2MG} \int_I G(x, s) ds.$

(iii) In case f has certain monotonicity properties, the Lipschitz continuity is not needed, and the iteration can be simplified by taking $A_i(x) \equiv 0$ for all i > 1. Furthermore, the functions v_1 and w_1 can be readily obtained from G(x, s) and $l_i(x)$ as before, but now without the requirement that 2MG < 1. Inspection of the proof of Theorem 1 leads to the following result.

THEOREM 2. Let L and T be as in Theorem 1. Let f(x, y) be continuous on $I \times \mathbb{R}$, and be monotone decreasing in y for each $x \in I$ and monotone increasing in y for each $x \in I_2$. Then if there exist functions $v_1(x)$ and $w_1(x)$ satisfying

$$v_1 \ge w_1, \quad x \in I_1; \quad v_1 \le w_1, \quad x \in I_2,$$

$$Tv_1(x) = Tw_1(x) = r, \quad and \; such \; that, for \; x \in I,$$

$$Lv_1 - f(x, v_1) \equiv \beta_1(x) \le 0,$$

$$Lw_1 - f(x, w_1) \equiv \gamma_1(x) \ge 0,$$

and if the sequences $\{v_m(x)\}, \{w_m(x)\}\$ are defined by

$$v_{m+1}(x) = l_r(x) + \int_I G(x, s) f(s, v_m(s)) ds,$$

$$w_{m+1}(x) = l_r(x) + \int_I G(x, s) f(s, w_m(s)) ds,$$
(2.14)

these sequences will converge to solutions v(x) and w(x) of the BVP (2.1)–(2.2), and

$$v_m(x) > v_{m+1}(x) > v(x) > w(x) > w_{m+1}(x) > w_m(x), \quad x \in I_1,$$

 $v_m(x) \le v_{m+1}(x) \le v(x) \le w(x) \le w_{m+1}(x) \le w_m(x), \quad x \in I_2.$

Further, any solution y(x) of the BVP (2.1)–(2.2) which lies between v_1 and w_1 will also lie between v and w. In case $|f(x,y)| \le B$ for some constant B for all $(x,y) \in I \times \mathbb{R}$, the functions v_1 and w_1 can be chosen as

$$v_1(x) = l_r(x) - B \int_I G(x, s) ds,$$

 $w_1(x) = l_r(x) + B \int_I G(x, s) ds.$

- 3. Applications. We consider two applications.
- (i) Let L in (2.1) be disconjugate on I, and suppose that the boundary conditions (2.2) are the conjugate boundary conditions

$$y^{(i)}(x_j) = c_{ij}, \qquad 0 \le i \le n_{j-1}, j = 1, \ldots, k,$$

where $\sum n_j = n$, $a = x_1 < x_2 < \cdots < x_n = b$, and c_{ij} are constants. Levin's inequality (1.3) shows that I_1 will be the union of all subintervals $[x_j, x_{j+1}]$ of I such that $n_{j+1} + \cdots + n_k$ is odd and I_2 will be the union of all such subintervals such that the same sum is even.

(ii) Consider the q-focal BVP

$$Ly = y^{(n)} - \lambda p(x)y = f(x, y)$$
 (3.1)

with boundary conditions

$$y^{(i)}(a) = c_i, i = 0, 1, \dots, q - 1,$$

 $y^{(j)}(b) = c_i, j = q, \dots, n - 1,$ (3.2)

where p(x) > 0 is continuous, $\lambda = \pm 1$ and the equation Ly = 0 is disfocal on I, i.e., has no nontrivial solution y(x) such that each of the derivatives $y^{(k)}(x)$, $k = 0, 1, \ldots, n - 1$, vanishes at least once in I (see [3]). Peterson [5] has determined the Green's function for the associated homogeneous problem and has shown that its sign is determined by the inequality

$$(-1)^{n-q}G(x,s) > 0$$
 for all $(x,s) \in (a,b) \times (a,b)$.

Hence in this case $I = I_1$ if n - q is odd; $I = I_2$ if n - q is even.

- REMARKS. (i) Because of the general form of the boundary conditions (2.2), we require that the initial approximants v_1 and w_1 satisfy the boundary conditions. For the conjugate k-point BVP, this requirement can be relaxed somewhat. A modification of the iteration (2.7) or (2.14) then leads to the conclusions of Theorem 1 or Theorem 2, if one begins with functions v_1 and w_1 satisfying the boundary conditions (3.1)-(3.4) of Theorem 3.1 of [6].
- (ii) Theorems 1 and 2 remain valid under Carathéodory conditions, in the case of Theorem 1 under the hypothesis that (2.4) holds for $(x, y) \in I \times \mathbb{R}$ for almost all x. Theorem 2 extends a result of V. Šeda [7] to the case of general linear boundary conditions.
- (iii) For certain boundary problems, not only the sign of Green's function G(x, s), but also the signs of some of its derivatives $\frac{\partial^r G(x, s)}{\partial x^r}$, $p = 1, \ldots, p_0$, $r_p < n$, are independent of s (see, for instance, [5]). (As an example, for the problem y'' = 0, y(0) = a, y'(1) = b, G(x, s) < 0, $\frac{\partial G(x, s)}{\partial x} < 0$.) In such cases, Theorems 1 and 2 can be extended in a natural way to problems of the form $Ly = f(x, y, y^{(r_1)}, \ldots, y^{(r_p)})$, Ty(x) = r.

REFERENCES

- 1. W. A. Coppel, Disconjugacy, Lecture Notes in Math., vol. 220, Springer-Verlag, Berlin, 1971.
- 2. L. K. Jackson, Boundary value problems for ordinary differential equations, Studies in Ordinary Differential Equations (J. K. Hale, ed.), MAA Studies in Mathematics, vol. 14, Mathematical Association of America, Washington, D. C., 1977.
 - 3. Z. Nehari, Disconjugate linear differential operators, Trans. Amer. Math. Soc. 129 (1967), 500-516.
 - 4. A. C. Peterson, On the sign of Green's functions, J. Differential Equations 21 (1976), 167-178.
- 5. _____, Green's functions for focal type boundary value problems, Rocky Mountain J. Math. (to appear).
- 6. K. Schmitt, Boundary value problems and comparison theorems for ordinary differential equations, SIAM J. Appl. Math. 26 (1974), 670-678.
- 7. V. Seda, Two remarks on boundary value problems for ordinary differential equations, J. Differential Equations 26 (1977), 278-290.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEBRASKA-LINCOLN, LINCOLN, NEBRASKA 68588

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, ROLLA, MISSOURI 65401 (Current address of both authors)