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PERTURBATIONS OF GROUND STATES OF

TYPE I C*-ALGEBRAS

C. J. K. BATTY

Abstract. It is shown that the class of irreducible representations of a type I

C*-algebra A which satisfy a spectrum condition for a given dynamical system on

A is unchanged if the system undergoes a sufficiently small relatively bounded

perturbation. It follows that if A is also unital, then the existence of ground states is

unaffected by such perturbations.

Let (A, a) be a C*-dynamical system, consisting of a C*-algebra A and a

strongly continuous homomorphism / -^ at of R into the group of *-automorphisms

of A. The infinitesimal generator 8a of a is a closed '-derivation of A defined on a

dense *-subalgebra 6Da of A, and the general theory of contraction semigroups [7],

[12] ensures that if ô0 is any bounded *-derivation of A, then 8a + 80 is the

generator of some dynamical system on A (a bounded perturbation of a). Longo [9]

showed that any ""-derivation 8X of A whose domain contains 6Da is 8a-bounded in

the sense that there are constants ßx and ß2 such that

||8,(a)||</3,H+j82||*«(a)|| (« e <$„)

and it was shown in [3] that 8a + 8X is the generator of a dynamical system on A

whenever ß2 < 1. Slightly more generally, if 8 and 8' are any two ""-derivations

with the same domain <% satisfying ||(fi' - 5)(a)|| < ßx\\a\\ + ß2(\\8(a)\\ + \\8'(a)\\)

for all a in 6D, for some ß2 < 1, then 8' is the (pre)generator of some C*-dynamical

system (A, a') if and only if 8 is the (pre)generator of some system (A, a) [12]. In

this event, a and a' (and also 8 and 8') will be said to be small perturbations of each

other (so any bounded perturbation is a small perturbation with ß2 = 0).These

results establish the framework for perturbation theory of C*-dynamical systems

and their applications to statistical mechanics.

A state </> of A is said to be an a-ground state if <J> annihilates the right ideal

7?a(0, oo)A, where Ra(0, oo) is the spectral subspace of a introduced by Arveson

[2] (see also [10]). The a-ground states are a-invariant and form a weak*-closed

face of the state space of A. Furthermore an arbitrary a-invariant state <j> with

associated cyclic representation (%¿,, tr^, £¿) and covariant unitary representation u

of R on %ç satisfying

",(T<,(a)£<.) = ■*<,(«,(<*))£<.

is a ground state if and only if u, = exp(ith) for some positive selfadjoint operator h

on %,, with h£ç = 0 [11]. Thus ground states correspond to states of minimum
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energy in the C*-algebraic model of statistical mechanics.

Powers and Sakai [11] showed that any approximately inner unital C*-dynamical

system possesses a ground state, but Lance and Niknam [8] constructed a simple

system without one. This raised the problem of determining which systems do

possess ground states. Let (%, tr) be any representation of A which is a-covariant

in the sense that a is implemented by some essentially self adjoint operator h on %,

so that

ir(at(a)) = exp(ith )ir(a)exp( — ith )

(where h is the closure of h). If h can be chosen to be lower semibounded, then

(%,ir) is said to satisfy a spectrum condition for a. In this case, if X is the infimum

of the spectrum of h, and unit vectors £„ (n = 1, 2, . . . ) in % are chosen so that

||/i£n - A£„|| -» 0, then any weak*-limit point of the states <¡>n(a) = <7i-(a)£„, £„> is an

a-ground state [13]. Thus a unital C*-dynamical system has a ground state if and

only if it has a nondegenerate representation satisfying a spectrum condition. If a'

is a bounded perturbation of a, then the same representations of A satisfy spectrum

conditions for a' as for a. Thus the existence of ground states in unital C*-algebras

is invariant under bounded perturbations of the dynamical system [6], [13]. Here it

will be shown that if A is also of type I and a' is any small perturbation of a, then

the same irreducible representations of A satisfy spectrum conditions for a' as for

a, and hence the existence of ground states is again invariant. Since the C*-alge-

bras of interest in quantum statistical mechanics are usually simple, this restriction

limits the physical significance of the result, but it may point the way to further

developments of the theory.

Proposition 1. Let (A, a) be a C*-dynamical system, J be a closed a-invariant

ideal in A, ir be the quotient map of A onto A /J, and (A / J, a) be the C*-dynamical

system satisfying m ° a = à ° it.

(i) % = ir(^>a), and for a in ^aande> 0, 8&(-jr(a)) = ir(8a(a)) and there exists b

in 6Ùa n / such that

||a-Z>||<Ha)||+e,

\\8a(a~b)\\<\\n(8a(a))\\+e.

(ii) / is invariant under any small perturbation a' of a.

Proof, (i) It is clear that <$,; contains ■*(<$„), and 8á(tr(a)) = ir(8a(a)). Further-

more trC^a) is â-invariant and dense in A/J, so it is a core for 8ä [5, Theorem 3].

Let/be a nonnegative continuously differentiable function on R with support in

[-1, 1] such that /'_,/(/) dt = I, and let

î) = 2e-1||a||j'1 \f'(t)\dt.

For a' in A and an increasing approximate unit (u,)lel for J, ||a((a')(l — «,)ll

decreases to ||ïr(a,(a'))ll = IW0')!!» an<l it follows from Dini's theorem that the

convergence is uniform for t in compact subsets of R. Hence for a in öDa, u may be

chosen in / so that 0 < u < 1 and for t in [-tj, ij],
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||«,(0)(l-K)||<Hfl)||+e,

||«r(5»)(l-«)||<|K(5a(a))|| + I£.

Let b = jl-xf(t)aant(u) dt. Then b belongs to 6íla n 7, and

ll«-*ll</l/«Hi-<v("))H

= Ç f(t)\\a_v(a)(l-u)\\dt
J— l

<|Ka)||+e,

•'—i */ »—i

< /_!-yw|«-¥(««W)(i - «)|| dt + ̂ J V(')| dt

<H«.(«))|+«.
It follows from the above estimates that the algebraic isomorphism between

^«/^a H 7 and wC5!),,) is an isometry when 6Da is equipped with the ¿"„-graph

norm, ^„/^a n 7 with the quotient norm and tr(tya) with the Sa-graph norm.

Since ^a/tya n 7 is a Banach space, the restriction of 8ä to tK^) is closed. Since

ir(tya) is also a core for 5á, it is the whole domain.

(ii) Since 8a maps <!)„ n 7 into 7, it follows from [3, Lemma 2, Corollary 5] that

tf)a n / is dense in 7, and 5a< also maps G¡)a n 7 into 7. The restriction 5a.|y of 8a, to

^ n 7 is a ""-derivation of 7, and is a small perturbation of 5Jy. Since 8a\j is the

generator of the C*-dynamical system (7, a\j), it follows from [3, Corollary 7], [12,

Theorem X.50] that <5a-|y is the generator of some C*-dynamical system a" on 7. It

is clear (e.g. by considering analytic vectors) that a"(a) = a't(a) for a in 7, so 7 is

a'-invariant.

Proposition 2. Let (A, a) be a C*-dynamical system, where A is of type I, and let

(%, w) be an irreducible representation of A whose kernel is a-invariant.

(i) There is an operator b in tf)a and a unit vector £ in % such that <n(b) is the

projection of % onto C|.

(ii) (%, it) is a-covariant.

Let b and £ be as in (i) and h be a self adjoint operator on % implementing a.

(iii) h is uniquely determined up to the addition of a scalar multiple X of the identity.

(iv) h is essentially self adjoint on n(tya)£, and X may be chosen so that

ih*(a)£ = <n{8a(ab))t = ^8a(ab2))£       (a G %).

Proof. Since m is irreducible and A is of type I, ir(A) contains all compact

operators on X, so (i) follows from [4, Theorem 8] and Proposition 1. If A and A'

are self adjoint operators on implementing a, then exp(— ith')exp(ith) commutes

with it(A), and is therefore a scalar multiple of the identity. Part (iii) of the

proposition follows. To prove (ii) and (iv), it now suffices to take fixed b and £ as in

(i), and construct A implementing a and satisfying (iv).
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Let bx = i(b8a(b) - 8a(b)b), and 8'(a) = 8a(a) - i(bxa - abx) (a E %). The

proof of [4, Theorem 8] shows that b8a(b)b, 8'(b) and b8'(a)b all belong to the

kernel of tt, so the state a -> <7r(a)£, O is invariant under the bounded perturbation

a' of a generated by 8'. Hence a' is implemented by the essentially self adjoint

operator h' with domain ttC5^^, given by

ih'v(a)i = ir(fi'(«))«       (a G <*>«)•

Let h be the closure of h! + ir(bx). Standard arguments (see [13, Proposition 9.6])

show that h implements a. Furthermore

iM«)€ = *(A„(a))É + w(«*i)í

= *(«»*)€ - *(aMa(ô))É + *(a8a(ô)6)É

since TT(b8a(b)b) = 0. But Tr(8a(ab2 - ab)b) = Tr(ab8a(b)b) = 0.

Theorem 3. Leí (/l, a) a/w/ (/l, a') 6e C*-dynamical systems which are small

perturbations of each other, where A is of type I. The same irreducible representations

of A satisfy spectrum conditions for a as for a'.

Proof. For simplicity, let 8 = 8a, 8' = 8a,, and €> be the common domain of 8

and 8'. By symmetry, it suffices to show that any irreducible representation (DC, w)

satisfying a spectrum condition for a also satisfies one for a'. Standard iterative

techniques (see the proof of [12, Theorem X.13]) enable us to assume that

\\(8'-8)(a)\\<ßx\\a\\+ß2\\8(a)\\       («£<$)

for some ß2 < 1.

By Proposition 1, the kernel of it is a'-invariant, and by Proposition 2, there exist

a unit vector | in DC, an operator b in <$> and essentially self adjoint operators h and

h' on w(^D)|, implementing a and a' respectively, with h lower semibounded, such

that ir(b) is the projection of % onto C£, and for a in ty,

iAir(fl){ = *(*(**))« = vr(«(a*2))|,

iA'ir(a){ = ?r(ô'(aZ>))É = n(8'(ab2))i

Then

||(A'-AV(^H<H(8'-«)(a*2))l

< inf{||(ô" - 8)(ab2 - a')\\:a' E ^,w(a') = 0}

< inf{ ßx\\ab2 - a'\\ + ß2\\8(ab2 - a')\\: a' E <$, w(a') = 0}

= ßx\\TT(ab2)\\+ß2\Tr(8(ab2))\\

< ßx\\TT(ab)\\+ ß2\\TT(ab8(b))\\+ ß2\\TT(8(ab)b)\\

< (/?, + ß2\\8(b)\\)\\ir(ab)\\+ß2\\tT(8(ab)b)\\

= (ßx + ß2\\8(b)\\)\\-n(a)£,\\+ ß2\\h*(a)t\\
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where part (i) of Proposition 1 has been used in the fourth line. Since A and h! are

essentially selfadjoint on 77(^0 )£, it follows from the Kato-Rellich theorem [7,

Theorem 5.4.11], [12, Theorem X.12] that A' is lower semibounded, so m satisfies a

spectrum condition for a'.

Corollary 4. Let (A, a) be a C*-dynamical system with a ground state, where A

is unital and of type I. Then any small perturbation of a also has a ground state.

Proof. Since the a-ground states form a weak*-closed face of the state space of

A, it follows from the Krein-Milman theorem that there is a pure state <j> of A

which is an a-ground state. Then w^ is an irreducible representation of A satisfying

a spectrum condition for a and hence for any small perturbation. The existence of

ground states for small perturbations now follows from [13, Proposition 6.10].

It seems possible that Theorem 3 and therefore Corollary 4 may be valid for

C* -algebras which are not of type I. However the above methods depend heavily

on Proposition 2, even part (ii) of which is a strong result. It is not difficult to see

that for any C*-dynamical system (A, a) and pure state <j> of A, the following three

conditions are equivalent:

(i) in the representation (9C, it^), a is implemented by a selfadjoint operator

whose domain contains £,.,

(ii) there is a bounded perturbation a' of a such that <i> is a'-invariant,

(iii) there is a constant ß such that for all selfadjoint a in 6Ùa,

\4>(8a(a))\2 < ßt>("2)-

Furthermore, for any pure state \p, (%^,, tt¿) is a-covariant if and only if »// is a

norm-limit of pure states <b satisfying (i) to (iii). Thus any more general result would

seem to require new techniques of proof. Since the spectrum condition can be

characterised in terms of the spectral subspaces R"(t, oo) [10, Proposition 3.5.3], a

possible alternative approach to that given above would be to consider the

behaviour of Ra(t, oo) under small perturbations, but this does not seem to lead to

a proof of either result.

Under bounded perturbations, the KMS states at nonzero temperatures show

greater stability than ground states. In particular there is a one-to-one correspon-

dence between the KMS states of the original and perturbed systems [1], [6,

Corollary 5.4.5]. One might therefore expect that there would be an analogue of

Corollary 4 for KMS states, but, if so, this would also appear to require new

techniques of proof.
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