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CHARACTERIZATION OF THE TRACE-CLASS

PARFENY P. SAWOROTNOW

Abstract. We characterize the trace-class t(A) associated with an //»-algebra A as

well as the trace-class (jc) of operators acting on a Hubert space.

In this note we present a simple characterization of the trace-class t(A)

associated with an 7/*-algebra A. An interesting special case of this result is a

characterization of the trace-class (tc) [4, p. 36] of operators acting on a Hubert

space. To the best of our knowledge this is the first time a characterization of this

class has been established.

An important role in the characterization is played by the property stated in the

following lemma.

Lemma 1. Let A be a proper H*-algebra [1] and let t(A) be its trace-class [5]. Then

the norm t( ) of t(A) has the following property (x G t(A)): (*) t(x) = lub{|tr(ajc)|:

a G t(A) and\\xb{tx(y*a*ay):y G r(A), r(y*y) < 1} < 1}.

Proof. This is a consequence of the Lemma on p. 101 of [6] if we would take

into account the fact that the set of the right centralizers of the form La: x -> ax

with a G t(A) is dense in the space C(A) (defined on p. 101 of [6]) and that

||La|| = {lub tT(y*a*ay): a G t(A), t( v*v) < 1}.

Our characterization is based on the notion of a trace-algebra, which we are

about to define.

Definition. A Banach algebra B with the norm n( ) is called a trace-algebra if it

has an involution x -» x*, a trace (a positive linear functional) tr defined on it, and

has the following properties (here x, y are arbitrary members of B):

(1) tr(xy) = tr(yx).

(2) tr(x*x) = n(x*x).

(3) n(x*) = n(x).

(4) |tr(x)| < n(x).

(5) if* =¿ 0 then x** ¥= 0.

We also make the standard assumption "n(xy) < n(x) • n(y), x, y G 7J," about

the continuity of multiplication.

Let B be a trace-algebra. Let (, ) be the scalar product on B defined in terms of

the trace, (x,y) = tr(y*x) = tr(xy*) (x,y G Ti). Then Ti is a pre-Hilbert space. Let

|| || be the corresponding norm and let A be the completion of 7? with respect to

this norm.
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Lemma 2. "||jc|| < «(*)" holds for each x E B.

Proof. Direct verification:

||x||2 = tr(jc*x) = n(x*x) < n(x*)n(x) = n(xf.

Lemma 3. Multiplication of B is continuous with respect to the Hilbert space norm,

ll*v|| < \\x\\-\\y\\,forallx,yEB.

Proof. We verify directly:

\\xytf = tT(y*x*xy) = ti(yy*x*x) = (x*x,yy*) < \\x*x\\ • \\yy*\\

< n(x*x) ■ n(yy*) = tr(x*x)tr( vv*) = ||x||2tr(y*y) = ||x||2- || y||2.

Theorem 1. The completion A of the trace-algebra B is a proper H*-algebra.

Proof. The fact that A is an //*-algebra is easily verified. If x, y, z E B then

(xy, z) = ix(z*xy) = ( v, x*z) = tr(yz*x) = tr((zy*)*x) = (x, zy*).

The involution is extendable, as an isometry, to entire A ; it has the same property.

Let us show that A is proper. Let T be the trivial ideal [1, p. 371] of A. Then

A = T © Tp and the orthogonal complement Tp of T is a proper //*-algebra. If

T ¥= 0 then there exists some member a of B such that a £ Tp. Write a = x + y

with x ET,y E Tp. Then x ^ o and ||a||2 = ||x||2 + || v||2. On the other hand we

have a*a = (x + y)*(x + y) = y*y since TA = AT = 0. This simply means that

|| y||2 = tr(y*y) = tr(a*a) = \\a\\2, and this is a contradiction; A is proper.

We shall refer to the algebra A above as the //*-algebra associated with the

(trace-algebra) B.

Theorem 2 (Characterization of a trace-algebra associated with an //*-algebra).

Let B be an abstract trace-algebra whose norm n() satisfies the following condition

for each a E B.

n(a) = lub{|tr(jca)|:     lub     tr(y*x*xy) < l). (*)
1 n(y*y) < 1 >

Then there exists a proper H*-algebra A such that tL4) = B.

Proof. Let A be the //""-algebra associated with B. We only need to show that

t(A) = B. Let x, y E B and a = xy. Then n(a) = r(a) because of Lemma 1 above.

If x, y E A ~ B then there are sequences xn, yn of members of B such that

II*« — Jc|| —^ 0 and || v - v„|| -♦ 0. Then it is easy to check that {jc„v„} is a Cauchy

sequence in the norm n( ):

n(x„y„ - Xmym) < n(x„(yn - vj) + n((x„ - xjyj

= i-(*„(y„ - ym)) + r((x„ - xm)yj

< U*J-||v„-vJ| + IK-xJ|-||vJ|^0.

(Here we used Corollary 4 on p. 99 of [5].) Let a' be its limit, lim„ n(a' — xj^) = 0.

It follows that ||a' - *„v„||-»0. But \\xy - x„y„||^0, hence a' = xy, and so

t(A) c B.
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Conversely let a G Ti and consider the functional/,: S-»tr(5a) on the space

C(A) of right centralizers of A [6, p. 101]. For each x G A consider the centralizer

Lx: y -» xy acting on A. Then ||Lx|| = lub{|tr(v*x""xy)|: y G Ti, n(y*y) < 1},

since Ti is dense in A, and so ||/J| = lub{|tr(xa)|: x G Ti, ||Zjc|| < 1} = n(a) is

finite. (The last equality follows from the condition (*) in the statement of the

theorem.) Invoking Theorem 1 of [6] we conclude that a G t(A). Thus 7? c t(A).

Corollary (Characterization of the trace-class (re) of operators on a Hubert

space). For each simple trace-algebra B satisfying condition (*) of Theorem 2 above

there exists a Hubert space 77 such that B is isomorphic and isometric to the

trace-class (tc) [4, p. 36] of operators acting on H.

Proof. It is easy to see that the algebra A associated with B is simple. It follows

then from the second structure theorem for T7*-algebras (Theorem 4.3 on p. 380 of

[1]) that A can be identified with the algebra (ac) [4, p. 29] of Hubert-Schmidt

operators acting on the Hilbert space T7 = L2(r), where r = {ea) is a maximal

family of primitive doubly orthogonal selfadjoint idempotents of A. Then B could

be identified with the trace-class (tc) of operators acting on T7.
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