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A NOTE ON INTEGRAL GEOMETRY IN THE INVERSIVE PLANE

JAY P. FILLMORE

Abstract. The density for circles in the Euclidean plane, which is invariant under

the group of similitudes, is in fact invariant under the inversive group. The

fundamental invariants of the inversive plane, angle and inversive distance, can be

obtained from the measures of certain sets of circles.

1. Circles. The set of circles in the Euclidean plane has density, taken in absolute

value,

dC = dadbdr/r\

where a and b are the rectangular coordinates of the center of the circle and r is its

radius. This density is invariant under the group of similitudes of the plane [2, p.

161]. But, it is furthermore invariant under the inversive group of the plane.

The inversive group, or conformai group, of the plane is generated by inversions

in circles and contains all similitudes; it is also generated by similitudes together

with the single additional transformation

x' = x/ (x2 + y2),       y' = y I (x2 + y2),

inversion in the unit circle. It suffices to verify that dC is invariant under this

inversion.

Inversion in the unit circle sends the circle with center (a, b) and radius r into

the circle with center (a', b') and radius r', where

a' = Fa,   V = Fb,    r' =\F\r,       with F = (a2 + b2 - r2)~\

Direct calculation gives

da'db'dr' = F'
9F      L3F        3F

F+aTa + bTb+r^ dadbdr.

Since F is homogeneous of degree -2 in a, b, r, Euler's identity gives -F for the

expression in absolute values. From da'db'dr' = |F|3 dadbdr and r'3 = |F|3r3, one

obtains the invariance of dC.

There is a deeper reason that the density dC is invariant under the inversive

group. The inversive plane, with the point at infinity adjoined, is a sphere; the

interior of the sphere carries a definite metric of constant negative curvature, and

conformai transformations of the sphere correspond to isometries of the interior.

Now, the exterior of the sphere carries an indefinite metric of constant negative

curvature and the isometries of the exterior correspond to those of the interior. An

exterior point, by intersecting its polar plane with the sphere, represents a circle in
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the inversive plane. Conformai transformations correspond to isometries of the

exterior, and dC is the volume element of this indefinite metric.

The nature of the expression for dC shows that sets of circles having arbitrarily

small radius cannot be expected to have finite measures, and consequently there is

no analog of Crofton's Theorem [2, p. 31]. The closest one has to Crofton's

Theorem is / n dC = 4L/r0, where L is the length of a fixed curve, n is the number

of intersections of a variable circle with the fixed curve, and the integral is

extended over circles having radius at least r0. This is a consequence of Poincaré's

Formula [2, p. 112]. But, this formula belongs to the geometry of similitudes and

not to inversive geometry.

A set of circles whose radii are not too small can be expected to have finite

measure; more precisely, a set of circles for which r/\a2 + b2 — r2 + 1| is bounded

away from zero will have finite measure. Furthermore, it is possible to determine

the fundamental invariants of the inversive plane, angle and inversive distance, in

terms of such sets of circles.

2. Formulas. For two circles of radii a and b and centers separated by distance c,

\(a2 + b2 — c2)/2ab\ gives the cosine of the angle between the circles in case they

intersect, and cosh 5, where 8 is the inversive distance between the circles, in case

they do not intersect [1, p. 129]. Angle and inversive distance are invariant under

the inversive group. If the circles are concentric, one has 8 = |log(6/a)|.

The region between two nonintersecting circles will mean: the region exterior to

one and interior to the other in case one of the circles lies inside the other, and the

region exterior to both in case each circle lies outside the other.

Formula 1. The measure of all circles lying in the region between two given

nonintersecting circles is

j dC = Js - 2tanh -V

where 8 is the inversive distance between the given circles.

The function 8 — 2 tanh(5/2) is invertible, so inversive distance can be de-

termined in terms of measures of sets of circles.

A circle which meets all three sides of a triangle lies in the region between the

incircle and the circumcircle of the triangle. The inversive distance between these

two circles is given by sinh(5/2) =\Vr/R [1, p. 131]. Consequently, one can

write a formula for the measure of the set of circles which meet all three sides of a

triangle in terms of the inradius r and the circumradius R.

The analog of Formula 1 for angles is somewhat more complicated. Given two

intersecting circles, construct two nonintersecting auxiliary circles both of which

are orthogonal to both of the given circles.

Formula 2. The measure of all circles which meet both of two given intersecting

circles and which meet the first but not the second auxiliary circle is

I dC = 45 csc w,
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where w is the angle between the given circles, and 8 is the inversive distance

between the auxiliary circles.

Consequently, angles can be determined in terms of measures of sets of circles.

3. Proofs. Formula 1. Any two nonintersecting circles can be inverted into

concentric circles [1, p. 121]. Since the quantities in the formula are invariant under

inversion, it suffices to verify it in this special case. Let the concentric circles have

center at the origin and radii a and b, a < b; let p and 9 be the polar coordinates of

the center of the variable circle C, r its radius. Then

f*-ffU **$*■■
b>p+r

O<0<2ir

The first two inequalities insure that C lies in the region between the concentric

circles. It is elementary to evaluate this integral and obtain

rnr/7*K/>-*K-^)-
Since 8 = log(b/a), one has Formula 1.

Formula 2. Any two intersecting circles can be inverted into intersecting lines. It

suffices to verify the formula in this special case. Take the point of intersection of

the lines as origin. The auxiliary circles have their centers at the origin; let a and b,

a < b, be their radii. Let p and 9 be the polar coordinates of the center of the

variable circle C, r its radius. The angle between the lines is w. Then
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j J   J   Ja<p+r<

p dp dB dr

p+r<b

p|sin 9\<r, p|sin(w — 9)\<r

0<9<2ir

The first double inequality insures C meets the circle of radius a but not the circle

of radius b; the second pair of inequalities insures that C meets both lines. Set

m(9) = Max(|sin 9\, |sin(« - 0)|);

the integral becomes

Jr2ir

n ÍÍ -
-'  •'a<p + r<b   r

dp dr

pm(0)<r

dB.

The inner double integral can be evaluated using the variables u = p + r and r;

one obtains

/*(/" U-^dr\du-iL^log*.
Ja \J(m/(\ + m))u      r3 I 2m(9f a

The desired integral becomes

>log*r*_L^.

Now, m(9) = sin 9 for w/2 < 9 < (w + tt)/2 and the graph of m(9) consists of

four regions congruent to this portion. Hence,

Jr2ir       1 /•(w + iO/2        ,
- dB = 4 csc2« d9 = 8 csc a.

o    m(0)2              JW2

Finally, 8 = log(b/a) gives Formula 2.
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