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THE CEVA PROPERTY CHARACTERIZES REAL,

STRICTLY CONVEX BANACH SPACES

J. E. VALENTINE AND S. G. WAYMENT

Abstract. If a, b, c are distinct collinear points of a metric space, then

...       I ab I be if b is between a and c,
(a, b, c) = {     ' , ,, .

{-(ab /be)    otherwise.

A metric space satisfies the Ceva Property provided for each triple of noncollinear

points p, q, r, if s,t,u are points distinct from p, q, r on the metric lines L(p, q),

L(q, r), and L(r,p), respectively, then the metric lines Up, t), L(q, u), and L(r, s)

have a common point if and only if (p, s, q)(q, t, r)(r, u,p) = 1, and pq/ps ¥=

pu/pr. In the euclidean plane, the requirement that pq/ps J=pu/pr forces the lines

L(r, s) and L(q, u) to have a common point. Thus the case of parallel lines is

avoided and the Ceva Property is meaningful in an arbitrary metric space. The

main result of the paper is that a complete, convex, externally convex, metric space

is a strictly convex Banach space over the reals if and only if it satisfies the Ceva

Property.

1. Introduction. The theorem of Ceva and its converse are of importance in

euclidean plane geometry. These theorems state that three Unes drawn from the

vertices of a triangle to points on the opposite sides are concurrent if and only if

the product of the signed ratios in which the sides are divided by the three points is

1.
The purpose of this paper is to show the theorem of Ceva and its converse, with

appropriate modifications, characterize real, strictly convex Banach spaces among

the class of complete, convex, externally convex, metric spaces.

We first note that three parallel lines in the euclidean plane are said to be

concurrent; and it is in this context that Ceva's theorem and its converse are valid.

Since parallelism has little or no meaning in a metric space, we must rule out this

exceptional case. Moreover, directed distances have no meaning in a metric space;

but in order to obtain the characterization we must consider signed ratios. For

example, if p, q, r are noncollinear points in the euclidean plane, and if q is the

midpoint of p and s, t is the midpoint of q and r, and if u is between p and r and

ru/up = 1/2, then

(ps/sq)(qt/tr)(ru/up) = 1

but the lines L(p, t), L(r, s) and L(q, u) are not concurrent.

We make the following definition for signed ratios.
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Definition 1.1. If a, b, c are distinct collinear points of a metric space, then

| ab/ be if b is between a and c,

(a, b, c) = | _ (a¿)/Ac)     otherwise.

It is now easy to state the appropriate modifications of Ceva's theorem and its

converse.

Ceva Property. If p, q, r are noncollinear points of a metric space and if s, t, u

are points distinct from p, q, r on metric lines L(p, q), L(q, r), and L(r, p),

respectively, then the metric lines L(p, t), L(q, u), and L(r, s) are concurrent, (have

a common point), if and only if

(p,s,q)(q,t,r)(r,u,p) - 1,

and pq/ps ^pu/pr.

In the euclidean plane, the requirement that pq/ps ¥=pu/pr forces the lines

L(r, s) and L(q, u) to have a common point. Thus the case of parallel lines is

avoided and the Ceva Property is meaningful in an arbitrary metric space.

Since algebraic lines are the only metric lines in a strictly convex Banach space, a

point z is on a line L(x,y) if and only if a real number X exists such that

z = Xx + (1 - X)y. Furthermore, for such a point, we have xz/zy = |1 — X|/|X|.

Since each pair of 2-dimensional Banach spaces over the reals are topologically

isomorphic, and topological isomorphisms preserve algebraic lines and points of

intersection of algebraic lines, it is easily seen that the Ceva Property of the

euclidean plane is preserved under a topological isomorphism between the

euclidean plane and a real, strictly convex, 2-dimensional Banach space. Thus all

real, strictly convex Banach spaces have the Ceva Property.

Throughout the remainder of this paper, M will denote a complete, convex,

externally convex, metric space which has the Ceva Property. For a detailed study

of the notions of convex, externally convex and the notation used throughout, the

reader is referred to [2].

2. Consequences of the Ceva Property. We now derive a sequence of lemmas

which follow fairly quickly from the Ceva Property. These lemmas give geometric

structure of the space and lead to the characterization, which we postpone until the

next section.

Lemma 2.1. Two distinct points of M lie on exactly one (metric) line.

Proof. Since M is complete, convex, and externally convex, each two distinct

points of M lie on at least one Une. If lines are not unique, then distinct points

p, q, r, s can be found such that q is a midpoint of p and r and of p and s. Let t be

a point between r and s such that rt/ts = 1/4. Then/7, r, s are noncollinear and

(P,1>r)ir> t,s)(s,q,p) ¥= 1,

but L(p, t), L(r, q) and L(s, q) are concurrent at p. This contradicts the fact that M

has the Ceva Property.
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Lemma 2.2. If p, q, r are noncollinear points of M and if s and u are points on the

(metric) segments S(p, q) and S(p, r), respectively, such that ps/pq = pu/pr, then

the line through p and t, the midpoint of q and r, bisects the segment joining s and u.

Proof. Let m denote the midpoint of j and u. Since ps/pq = pu/pr, ps/sq =

pu/ur, and the triples p, s, q and p, u, r satisfy the same betweenness relation.

Consequently,

(p,s,q)(q,t,r)(r,u,p) = 1,

and by the Ceva Property, L(p, t), L(q, u) and L(r, s) have a common point, say v.

By the same reasoning,

(p, q, s)(s, m, u)(u, r,p) = 1,

and L(s, r), L(u, q), and L(p, m) are concurrent. Since lines are unique by Lemma

2.1, L(p, v) coincides with L(p, m) and L(p, t).

Lemma 2.3. If p, q, r are noncollinear points of M and if s, u are any points between

p and q and p and r, respectively, then L(r, s) and L(q, u) have a common point.

Proof. Let / be the point on the segment joining q and r such that qt/tr =

(sq/ps)(up/ru). Then

(p, s, q)(q, t, r)(r, u,p) = (ps/sq)(qt/tr)(ru/up) = 1,

and by the Ceva Property L(p, t), L(q, u) and L(r, s) have a common point.

Lemma 2.4. Let p, q, r be noncollinear points. If s, t, u are points on the segments

S(p, q), S(q, r) and S(r,p), respectively, such that

(p,s, q)(q, t,r)(r, u,p) = 1,

then the point, v, common to L(p, t), L(q, u) and L(r, s) is between p and t, between q

and u, and between r and s.

Proof. Since v, q, r are noncollinear points and L(q, s), L(v, t), and L(r, u) have

the point p in common,

(v, u, q)(q, t, r)(r, s,v)= 1.

By  hypothesis,  t  is  between  q and r,  and  thus  (q, t, r) > 0.  Consequently,

(v, u, q)(r, s, v) > 0.

By way of contradiction, suppose (v, u, q) > 0 and (r, s, v) > 0. Then

rs + sv = rv < vu + ur = vu + pr — pu (1)

and

vu + uq = qv < qs + sv = sv + pq — ps. (2)

Adding the respective extreme sides of the inequalities of (1) and (2), cancelling

common terms, and adding pu + ps to both sides of the resulting inequality, we

obtain

rs + uq + pu + ps <pr + pq,

which contradicts the triangle inequality. Therefore, (t>, u, q) < 0 and (r, s, v) < 0.

Thus u is not between v and q and s is not between r and v. It follows that v is
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between q and u or q is between u and v and v is between r and j or r is between s

and t).

Suppose q is between u and t> and r is between 5 and v. Then

uq + qv = uv < ur + rv = rv + pr — pu (3)

and

ir + ru = sv < qv + ítí = qv + pq — ps; (4)

as above we obtain

uq + sr + pu + ps <pr + pq,

contrary to the triangle inequality.

We now have v is between q and u or v is between r and s. We need to show

both relations are valid.

Without loss of generality, suppose v is between q and u and v is not between r

and s. Since (r, s, v) < 0, s is not between r and v, so r is between s and ü.

Since p, s, u are noncollinear points, we may pick a point x on L(j, u) such that

(p, q,s)(s, x, u)(u,r,p) = 1.

Since (p, q, s) < 0 and (u, r,p) < 0 by hypothesis, (s, jc, u) > 0. Moreover, by the

Ceva Property, L(p, x), L(r, s) and L(u, q) are concurrent. Since lines are unique

and L(r, s) and L(q, u) contain the point v, v is on L(p, x).

Since s, u, v are noncollinear and L(s, q), L(u, r), and L(v, x) all contain p, by

the Ceva Property

(s, r, v)(v, q, u)(u, x, s) = 1.

This is impossible, for (s, r, v) > 0 and (v, q,u)<0 by assumption and (s, x, u)

> 0 by the above. We conclude that v is between q and u and v is between r and s.

In a similar manner it is seen that v is between p and /.

Corollary 2.1. If p, q, r are noncollinear points of M and if s, u are any points

between p and q andp and r, respectively, then the segments S(r, s) and S(q, u) have

a common interior point.

Corollary 2.2. If p, q, r are noncollinear points of M and if s, t, u are any points

between p and q, q and r, and r and p, respectively, then the segments S(u, s) and

S(p, t) have a common interior point.

Proof. By Corollary 2.1, the segments S(p, t) and S(q, u) have a common point

v. A second application of Corollary 2.1 to the noncollinear points p, u, q with j

between p and q and v between q and u yields the result.

Corollary 2.3. If p, q, r are noncollinear points and if s and u are between p and

q and p and r, respectively, then the line L(s, u) contains no point between q and r.

Proof. Suppose the contrary. Then L(s, u) contains a point t that is between q

and r. By Corollary 2.2, the segments S(r, s) and S(u, t) have a common interior

point v. But now L(r, s) and L(u, t) have the distinct points s and v in common,

contrary to the fact that two distinct points lie on a unique line.
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Corollary 2.4. If p, q, r are noncollinear points and if s and u are points between

p and q andp and r, respectively, then the line L(q, r) contains no point between s and

u.

Proof. Suppose L(q, r) contains a point v between s and u. By Corollary 2.3, v is

not between q and r. No generality is lost if we assume q is between t; and r. Since

p, v, and r are noncollinear points and q is between v and r and u is between p and

r, by Corollary 2.1, the segments S(v, u) and S(p, q) have a common interior point

/. But now the lines L(p, q) and L(u, s) have the distinct points 5 and t in common,

contrary to Lemma 2.1.

Lemma 2.5. Let p, q, r be noncollinear points of M. If u is between p and r and if v

is between q and u, then L(r, v) contains a point w between p and q.

Proof. By Corollary 2.1, for each point x on the segment S(p, q), S(r, x) and

S(q, u) have exactly one common point, this defines a function / from S(p, q) into

S(q, u). Suppose {x„) is a sequence of points of S(p, q) with lim xn = x0. Then

{f(xn)} is a sequence of the compact set S(q, u) and consequently, it contains a

convergent subsequence, which we may assume is the original sequence. If lim/(xn)

= v0, then since rf(xn) + xj(xn) = rxn, by continuity of the metric, ry0 + y¿x0 =

rx0. Thus, y0 is on S(r, x0) and y0 is on S(q, u), and by the definition of

f,y0 = f(x0); that is, / is continuous on S(p, q). Now / maps the connected set

S(p, q) onto a connected subset of S(q, u). But f(q) = q and f(p) = u and / is

onto. This completes the proof, since/is 1 — 1.

Lemma 2.6. // p, q, r are noncollinear points and if s, t, u are points on the lines

L(p, q), L(q, r), and L(r, p), respectively, such that p is the midpoint of q and s, p is

the midpoint of r and u, and t is the midpoint of q and r, then L(p, t) bisects the

segment joining u and s.

Proof. Let x and y be points on L(p, q) and L(p, r), respectively, such that q is

the midpoint of p and x and r is the midpoint of p and y. If m is the midpoint of x

and y, thenp, x, y are noncollinear points and

(p, s, x)(x, m,y)(y, u,p) = 1.

By the Ceva Property L(x, u), L(y, s) and L(p, m) all contain a point, say z. Since

m is the midpoint of x and y and q, r are the respective midpoints of p and x andp

and y, by Lemma 2.2, / is on L(p, m). Now z, x, y are noncollinear points and

L(y, u), L(x,s) and L(z, m) all contain p, so by the Ceva Property,

(z, u, x)(x, m,y)(y, s, z) = 1.

By Lemma 2.2, L(z, m) contains the midpoint of u and s, which completes the

proof, since L(z, m) = L(p, t).

Lemma 2.7. Let p, q, r be noncollinear points and let s, t, u be points on the lines

L(p, q), L(q, r) and L(r, p), respectively, such that p is the midpoint of q and s, p is

the midpoint of r and u, and t is the midpoint of q and r. If a, v,w are the respective

midpoints of u and s, u and q, and r and s, then p is the midpoint of a and t andp is

the midpoint of v and w.
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Proof. It follows from Lemma 2.6 that a, p, t are collinear points and v,p, w are

collinear points.

Choose sequences {$„} and {«„} on the segments S(p, s) and S(p, u), respec-

tively, such that ps„/ps = pu„/pu and lim s„ = s and lim un = u. It follows from

the Ceva Property that the lines L(q, un), L(r, sn), and L(p, t) contain a common

point tn and by Lemma 2.2 L(p, t) bisects S(un, sn). Since sn is between p and s and

w is between r and s, the segments S(w, p) and S(r, sn) have a common point wn by

Corollary 2.1. Since wn is on the compact set S(p, w), {wn} contains a subsequence

which converges to a point on S(p, w), say w0. No generality is lost if we assume

the original sequence converges to w0. Now snwn + wnr = snr and by continuity of

the metric, sw0 + w0r = sr and since w0 is also on the segment S(p, w), we have

w0 = w. For each n let rn be the midpoint of sn and r. Then

V» + f„w„ = s„w„n  n n    n n    n

or

s,». + H>„r  = s„r„.n    n n  n n  n

In any event, since lim snwn = sw and lim snrn = íw, lim wnrn = 0. Now rnw < rnwn

+ wnw and since lim rnwn = 0 and lim wBw = 0, it follows that lim rnw = 0; that is

lim rn = w.

Similarly if v„ is the point of intersection of the segments S(q, un) and S(p, v),

then lim v„ = v and if qn is the midpoint of un and q then lim çn = v. Now by

Lemma 2.2, L(p, t) bisects the segment S(rn, qn) in a pointpn. An argument similar

to that given above shows limp„ = p. It now follows from the continuity of the

metric that/7 is the midpoint of v and w. In the same manner, it is seen thatp is the

midpoint of a and t.

3. The characterization. At this point it is convenient to introduce the Young

Postulate and show the Ceva Property implies it. This will complete the characteri-

zation, for Andalafte and Blumenthal [1] have shown a complete, convex, exter-

nally convex, metric space is a Banach space if and only if it satisfies the Young

Postulate.

The Young Postulate. If p, q, and r are points of a metric space, and if q' and

r' are the midpoints of p and q, and of p and r, respectively, then q'r' = qr/2.

Theorem 3.1. The space M satisfies the Young Postulate.

Proof. Since each pair of distinct points of M lies on a unique line (Lemma 2.1),

it is easily seen that collinear points satisfy the Young Postulate. Thus, we need

only show that if p, q, r are noncollinear points of M and if q', r' are the respective

midpoints of p and q and/? and r, then q'r' = qr/2.

Let m be the point on the line L(q, r') such that r' is the midpoint of q and m

and let {m'n} be a sequence of distinct points on the segment S(m, r) such that

lim m'n = m. By Corollary 1, the segments S(r, r') and S(q, m'„) have a common

point rn, n = 1, 2, 3, . . . . The sequence {rn}, a subset of the compact set S(r, r'),

contains a convergent subsequence which we may assume to be the original

sequence. Since qrn + rnm'n = qm'n and lim qm'n = qm, it follows that lim rn = r0 is
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between q and m and since r0 is on the segment S(r, r') we conclude lim rn = r'.

Moreover, p, q, rn are noncollinear points. For each n, let mn be the point on

L(q, rn) such that

(p, q', q)(q, m„, rn)(rn, r,p) = 1. (5)

By the Ceva Property, L(p, m„), L(rn, q'), and L(q, r) contain a common point, say

e„. Since q' is the midpoint of p and q, (p, q', q) = 1 and (q, mn, rn) = l/(rn, r,p).

Since rn is between r and p, (rn, r, p) < 0 and /•/-„ < pr. Consequently, (q, mn, rn) <

0 and mn is not between q and r„. Moreover, <pnn > mnrn and thus r„ is between q

and m„.

For each n, let i„ be the point on the line L(r, mn) such that

(™„> <7, Oí''»./'» r)(r. '„> mn) = 1- (6)

By the Ceva Property, the lines L(p, mn), L(rn, tn) and L(q, r) have a common

point, say dn. But from the above, L(p, mn) and L(q, r) contain the point cn, hence

dn = c„. Moreover, (r„,p, r) < 0 and (/n„, #, /•„) < 0 and thus (r, tn, mn) > 0 and

consequently /„ is between r and mn, n = 1, 2, 3, ... .

Now m„, rn, cn are noncollinear points and the lines L(mn, tn), L(rn,p), and

L(c„, q) all contain the point r. Consequently, by the Ceva Property,

(*"»> 9, rn)(r„, t„, c„)(c„,p, m„) = 1. (7)

Since (p, q', q) = 1 and lim rn = r' implies lim(r„, r,p) = -1/2, it follows from

(5) that lim(<7, m„, r„) = -2. The fact that rn is between q and mn now implies that

X\m(mn, q, rn) = -2 and thus from (7) we have

lim(r„, t„, c„)(cn,p,m„) = -{. (8)

Since p, rn, cn are noncollinear points and the lines L(p, q'), L(rn, mn) and

L(cn, r) all contain q, the Ceva Property yields

(P> r, rn)(rn, q', cn)(cn, mn, p) = 1 (9)

and since lim(p, r, rn) = -2,

lim(r„, q', c„)(cn, m„,p) = -±. (10)

Since p, q, cn are noncollinear points and the lines L(p, r), L(q, mn) and L(cn, q')

all contain rn,

(p, q', q)(q, r, cn)(cn, m„,p) =1 (11)

by the Ceva Property.

Thus (q, r, cn)(c„, m„,p) = 1 (since (p, q', q) = 1) and (q, r, cn) and (cn, m„,p)

are both positive, or both are negative. By Corollaries 2.3 and 2.4, c„ is not between

mn and p and cn is not between q and r. Consequently, (q, r, cn) > 0 and (c„, m„, p)

> 0 imply

(i) r is between q and cn and mn is between cn and p, while (q, r, cn) < 0 and

(c„,m„,p)<0 imply

(ii)p is between cn and m„ and q is between c„ and r.
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Since /„ is between mn and r and q' is between p and q, (i) and Corollary 2.2

imply

(iii) tn is between q' and c„,

while (ii) and Corollary 2.2 imply

(iv) q' is between /„ and cn.

Moreover, (i) and Corollary 2.1 imply tn is between cn and rn and rn is between q'

and cn and tn is between q' and c„. Corollary 2.1 and (ii) imply rn is between c„ and

/„ and q' is between cn and rn.

Since (c„,p, wn)(c„, m„,p) < 0 and (r„, t„, c„)(r„, q', c„) < 0, the result of divid-

ing the respective sides of (8) by the respective sides of (10) is

^™(rntn/rnq')(c„p/cnmn)(q'cn/tncn) = 1. (12)

Assertion, lim r„tn/rnq' = 1.

From (5), since (p, q', q) = 1 and lim(rn, r,p) = -1/2, we have lim qmn/mnrn =

2 and thus lim(qm„-2m„rn) = 0. But qmn-2mnrn = qr„-rnmn and Um qrn = qr' and

hence lim rnmn = qr'. Now since qmn = qrn + rnmn we have lim qmn = 2qr' = qm.

Further, since lim m'n = m, lim qm'n = qm. Since qm = qm'„ ± mnm'n, lim mnm'n =

0. Now 0 < mm„ < m„m'„ + m'„m, so lim mn = m. Let t0 denote the midpoint of r

and m. If mn is between # and m'n, an application of Corollary 2.1 shows that

L(q, t0) contains a point between r and mn. If m¿ is between q and wn, then by

Lemma 2.5, L(#, /0) contains a point between r and m„. Let $„ denote the point on

L(q, t0) that is between r and m„, /i = 1, 2, 3, . . . . Since lim m„ = m, the sequence

{sn} is a bounded subset of the finitely compact set L(q, t0). Thus, {sn} contains a

convergent subsequence which we may assume to be the original sequence. If

lim sn = s0, then s0 is on L(q, t0) and since rsn + s„m„ = rmn, by continuity of the

metric s0 is on L(r, m). Since L(r, m) and L(q, t0) have t0 in common, sQ = t0. Since

lim(m„, c, rn) = -2 and lim(r„,p, r) = 1/2, from (6) lim(r, tn, mn) = 1. Thus 0 =

lim(rtn-tnmn) = \im(rmn-2tnmn) and since lim rmn = rm, lim tnmn = rt0 and conse-

quently lim rt0 = r/„. Now ri„ = rtn ± tnsn and since lim rsn = rt0 and lim rt„ =

r/0, lim tns„ = 0. Now 0 < tnt0 < snt„ + s„t0 and lim t„ = /0. By Lemma 2.7,

r't0/r'q' = 1 and by continuity of the metric lim(rntn/rnq') = 1.

Returning to (12), we see that \\m(c„p/cnmn)(q'cn/t„c„) = 1. Using (i), (ii), (iii),

and (iv), we have

lim[(c„wn + m^/c^Kq't,, + tncn)/tncn] = 1 (13)

or

lim[(c„m„ - /Mnp)/cnm„][(cnin-9'/„)//„cn] = 1, (14)

and consequently lim mnp/cnmn = lim q'tn/tncn = 0. Since lim m„p = mp and

lim q'tn = q't0, lim c„m„ - lim t„cn = oo and since t„c„-tnr < rc„, lim rc„ = oo.

Also q'c„ = f„cn ± i'r„ and lim q'cn = oo. Now rnc„/q'c„ = (?'cn ± q'r„)/q'c„ and

Um ̂ „/Ye,, = 1.
Dividing the respective side of (9) by the respective sides of (11) and simplifying

the result we have

(rnq'/qr)(pr/rnr)(rc„/q'cn) = 1.
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Since limpr/rnr = 2 and lim rcn/q'cn = 1, 1/2 = lim rnq'/qrn = r'q'/qr; that

is r'q' = qr/2.

Theorem 3.2. A complete, convex, externally convex, metric space is a real, strictly

convex Banach space if and only if it has the Ceva Property.
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