INTERPOLATION FAILS FOR THE SOUSLIN-KLEENE CLOSURE OF THE OPEN SET QUANTIFIER LOGIC

J. A. SGRO¹

ABSTRACT. In this paper we show that the Souslin-Kleene closure of the open set quantifier logic fails to have interpolation. We also show that the notion of a T_0 -topological space is not definable in this logic. This gives a more natural proof that it is strictly weaker than the interior operator logic.

The questions of whether the Souslin-Kleene closure of the open set quantifier logic is the interior operator logic or even has interpolation come naturally from the work of the author in [3], [4], and [5]. We begin by giving the formal definitions and then the three results which settle these questions.

DEFINITION. The Souslin-Kleene closure, $\Delta(\mathbb{C}^*)$, of a logic \mathbb{C}^* is the logic formed by adding the complementary pseudo-elementary classes to the elementary classes.

That is, Ω and Ω^c are $PC_{\mathfrak{L}^{\bullet}}(L)$ -classes if and only if they are $EC_{\Delta(\mathfrak{L}^{\bullet})}(L)$ -classes. See [1] for further background.

DEFINITION. Take a structure $\mathfrak A$ and $q \subseteq \mathfrak P(A)$ and form $(\mathfrak A, q)$. If q is a topology on A then $(\mathfrak A, q)$ is called *topological*.

DEFINITION. The open set quantifier logics $\mathcal{L}(Q)$ and $\mathcal{L}(Q^n)_{n \in \omega}$ are formed by adding quantifiers Qx and $Q\vec{x}$, $n \in \omega$, to first order logic where the interpretations of $Qx\varphi(x)$ and $Q\vec{x}\varphi(\vec{x})$, respectively, are that the sets defined by $\varphi(x)$ and $\varphi(\vec{x})$ are open in the topology and the *n*th product topology. For further background see [3] and [4].

We are now ready to state and prove the main theorems of this paper.

THEOREM 1. For each (\mathfrak{A}, q) where \mathfrak{A} is an L-structure there is an $L^{\#} \supseteq L$ and an extension $\mathfrak{A}^{\#}$ of \mathfrak{A} to $L^{\#}$ such that if $(\mathfrak{B}, r) \equiv_{\mathfrak{A}(O)} (\mathfrak{A}^{\#}, q)$ then

$$(\mathfrak{B} \upharpoonright L, r) \equiv_{\Lambda(\mathfrak{C}(Q))} (\mathfrak{A}, q).$$

PROOF. This result is a straightforward application of the definition of $\Delta(\mathcal{C}(Q))$.

Counterexample 2. The counterexample to interpolation for $\Delta(\mathcal{C}(Q_{n \in \omega}^n))$ is the same as the one for $\mathcal{C}(Q)$ as presented in [3] and [4].

We will assume that interpolation holds and derive a contradiction. Let $L_1 = \{B(x), C(x), R(x)\}$ and $L_2 = \{B(x), C(x), P(x)\}$. We define $\varphi(R)$ to be

$$\neg QxB(x) \land \forall y(B(y) \leftrightarrow C(y) \lor R(y)) \land QxR(x)$$

Presented to the Society, February 26, 1979; received by the editors May 17, 1979. AMS (MOS) subject classifications (1970). Primary 02H99; Secondary 02G99.

¹This research was partially supported by NSF grant #MCS-77-04131.

and $\psi(P)$ to be

$$\forall x (C(x) \rightarrow P(x)) \rightarrow \neg Qx(P(x) \land B(x)).$$

One easily sees that $\models \varphi(R) \rightarrow \psi(P)$. Take $A = \mathbb{N}$, i.e. the set of natural numbers

$$B^{\mathfrak{A}} = \{2n|n \in \mathbb{N}\}, \qquad C^{\mathfrak{A}} = \{4n|n \in \mathbb{N}\}.$$

Define (\mathfrak{A}, q) to be $\langle A, B^{\mathfrak{A}}, C^{\mathfrak{A}}, \{\emptyset, \mathbb{N}\} \rangle$.

Now since we have assumed that $\Delta(\mathcal{C}(Q))$ has interpolation there is a $\theta \in \Delta(\mathcal{C}(Q))$ such that $\models \varphi(R) \to \theta$ and $\models \neg \psi(P) \to \neg \theta$.

Without loss of generality we assume that (\mathfrak{A}, q) models θ since the argument in the alternate case is entirely analogous.

Now expand $\mathfrak A$ to an $L^{\#}$ -structure $\mathfrak A^{\#}$ as in Theorem 1. We then will expand q to a $q^{\#}$ and define a $P^{\mathfrak A^{\#}}$ such that $(\mathfrak A^{\#},q) \prec_{\mathfrak L(Q)} (\mathfrak A^{\#},q^{\#})$ and $(\mathfrak A,P^{\mathfrak A^{\#}},q^{\#}) \models \neg \psi(p)$. This implies that $(\mathfrak A,q^{\#}) \equiv_{\Delta(\mathfrak L(Q))} (\mathfrak A,q)$ and $(\mathfrak A,q^{\#}) \models \neg \theta$ which is a contradiction.

Let $\psi_i(x)$, $i \in \omega$, enumerate the $L_A^{\#}(Q)$ definable nonopen sets of $(\mathfrak{A}^{\#}, q)$. We proceed by induction. For 0 we pick an x and y such that

$$y \in [\psi_0(x)]^{(\mathfrak{A}^*,q)}$$

and

$$x \in B^{\mathfrak{A}^{\#}} - \left[\psi_0(x)\right]^{(\mathfrak{A}^{\#},q)}$$

if possible, otherwise

$$x \in A - [\psi_0(x)]^{(\mathfrak{A}^*,q)}.$$

Assume we have picked the sequences y_0, \ldots, y_n and x_0, \ldots, x_n . We will now choose x_{n+1} and y_{n+1} as follows. Choose, if possible, $x \in B^{\mathfrak{A}^*} - [\psi_{n+1}(x)]^{\mathfrak{A}^*,q}$ such that $x \neq y_i$ for $0 \leq i \leq n$. Otherwise pick y such that

$$y \in [\psi_{n+1}(x)]^{(\mathfrak{A}^*,q)} \cap B^{\mathfrak{A}^*}$$

and

$$y \neq x_i$$
 for $0 \le i \le n$.

This is possible since otherwise $[\psi_{n+1}(x)]^{(\mathfrak{A}^{*},q)} \cap B^{\mathfrak{A}^{*}}$ and $B^{\mathfrak{A}^{*}} - [\psi_{n+1}(x)]^{(\mathfrak{A}^{*},q)}$ would be finite which would imply that $B^{\mathfrak{A}^{*}}$ is finite which is false.

Let $P^{\mathfrak{A}^*}$ be $(C^{\mathfrak{A}^*} \cup \{x_i\}_{i \in \omega}) \cap B^{\mathfrak{A}^*}$ and let q^* be the topology generated by $q \cup \{P^{\mathfrak{A}^*}\}$. We claim that $(\mathfrak{A}^*, q) <_{\mathfrak{L}(Q)} (\mathfrak{A}^*, q^*)$ and that $(\mathfrak{A}^*, P^{\mathfrak{A}^*}, q^*) \models \neg \psi(P)$. The second clause is straightforward. We prove the first by induction on the number of occurrences of Qx.

If $(\mathfrak{A}^{\#}, q) \models Qx\varphi(x)$ then $(\mathfrak{A}^{\#}, q^{\#}) \models Qx\varphi(x)$ since $q \subseteq q^{\#}$, thus assume $(\mathfrak{A}^{\#}, q^{\#}) \models Qx\varphi(x)$ and $(\mathfrak{A}^{\#}, q) \models \neg Qx\varphi(x)$ and derive a contradiction. Thus $[\varphi(x)]^{(\mathfrak{A}^{\#}, q)} = P^{\mathfrak{A}^{\#}}$. But there is a k such that $[\varphi(x)]^{(\mathfrak{A}^{\#}, q)} = [\psi_k(x)]^{(\mathfrak{A}^{\#}, q)}$ so by the definition of $P^{\mathfrak{A}^{\#}}$ either

$$x_k \in P^{\mathfrak{A}^*} - [\psi_k(x)]^{(\mathfrak{A}^*,q)}$$

570 J. A. SGRO

or

$$y_k \in [\psi_k(x)]^{(\mathfrak{A}^*,q)} - P^{\mathfrak{A}^*}.$$

Hence a contradiction.

REMARK. The analogous result for $\Delta(\mathcal{C}(Q^n)_{n\in\omega})$ can be proved by the same method. Also this result shows that the interior operator logics $\mathcal{C}(I)$ and $\mathcal{C}(I^n)_{n\in\omega}$ as defined in [3] and [5] strictly contain $\Delta(\mathcal{C}(Q))$ and $\Delta(\mathcal{C}(Q^n)_{n\in\omega})$, respectively, since they both have interpolation by [5].

By [2] we know that because $\Delta(\mathcal{C}(Q))$ and $\Delta(\mathcal{C}(Q^n)_{n \in \omega})$ do not have interpolation they do not have a Beth definability theorem.

However this result of strict containment can be improved by giving a more natural counterexample in the topological sense.

DEFINITION. A topological space is called T_0 (*Minkowski*), if and only if for each $x \neq y$ there is an open set containing one but not the other.

We can equivalently define a T_0 -space as a space where unequal points have unequal closures. See [6].

The class of T_0 -spaces is the class of models of the $\mathcal{C}(I)$ sentence

$$\forall x \forall y (x \neq y \rightarrow (Iy(y \neq x) \lor Ix(x \neq y))).$$

However we will now prove that the class of T_0 models is not a basic elementary class of $\Delta(\mathcal{C}(Q))$.

Take \mathfrak{A} to be ${}^{2}N = \{f | f: \{0, 1\} \rightarrow \mathbb{N}\} \text{ and } L = \emptyset.$

Define a pseudometric by d(x, y) = |x(0) - y(0)|. Then the topology that d generates, call it q, is generated by the closures of points and every open set is infinite. (\mathfrak{A}, q) also is not a T_0 -space since the closure of a point, which is infinite, is the closure of any point in it.

Now we will construct the counterexample using the following theorem.

THEOREM 3. There is a topology $q^{\#}$ such that $(\mathfrak{A}, q^{\#})$ is a T_0 -topology and $(\mathfrak{A}, q) \equiv_{\Delta(\mathcal{C}(Q))} (\mathfrak{A}, q^{\#})$.

PROOF. To show this result we expand $\mathfrak A$ and L to $\mathfrak A^{\#}$ and $L^{\#}$ as in Theorem 1 (taking pains to add functions to the language to pick out noninterior points from definable nonopen sets as in [3]).

Given a pair a, b we will define a topology $q_{\langle a,b\rangle}$ such that $(\mathfrak{A}^{\#},q)$ $\prec_{\mathfrak{C}(Q)}(\mathfrak{A}^{\#},q_{\langle a,b\rangle})$, a and b have unequal closures, and $q_{\langle a,b\rangle}$ is generated by the closures of points and every open set is infinite. This is the same topological property of (\mathfrak{A},q) which we use.

We then iterate this construction through all distinct pairs and take the union (see [3]) which will be T_0 and satisfy the conclusion to the theorem.

Define $x_{-1} = a$ and $y_{-1} = b$. Take h to be a bijection from N into $N \times N \times 2$. Let $\psi_i(x)$, $i \in \omega$, enumerate the $L_A^\#(Q)$ definable nonopen sets and let θ_i , $i \in \omega$, enumerate the closures of points, which is a basis for q.

Assume we have defined $x_{-1}, \ldots, x_{n-1}, y_{-1}, \ldots, y_{n-1}$. We now will define x_n and y_n .

Assume $(h(n))_1 = 0$. Pick an x such that $x \neq y_i$, $-1 \leq i \leq n-1$, and,

$$x \in [\psi_{(h(n))_1}(x)]^{(\mathfrak{A}^*,q)}$$
 and $\mathfrak{G}_{(h(n))_0} \subseteq [\psi_{(h(n))_1}(x)]^{(\mathfrak{A}^*,q)}$

or

$$x \in \mathfrak{O}_{(h(n))_0} - ([\psi_{(h(n))_1}(x)]^{(\mathfrak{A}^*,q)} \cup \{y_{i-1}\}_{0 \le i \le n}),$$

and set $y_n = y_{n-1}$ and $x_n = x$.

Otherwise pick a

$$y \in \mathfrak{G}_{(h(n))_0} \cap \left(\left[\psi_{(h(n))_1}(x) \right] \right)^{(\mathfrak{A}^*,q)} - \operatorname{Int} \left(\left[\psi_{(h(n))_1}(x) \right]^{(\mathfrak{A}^*,q)} \right)$$

and

$$x \in [\psi_{(h(n))_1}(x)]^{(\mathfrak{A}^*,q)}$$

and set $y_n = y$, $x_n = x$, where Int(X) is the interior of the set.

If $(h(n))_2 = 1$ then switch x and y.

This definition is possible because if

$$\Theta_{(h(n))_0} \subseteq \left[\psi_{(h(n))_1}(x)\right]^{(\mathfrak{A}^*,q)},$$

and

$$\emptyset_{(h(n))_0} - \left(\left[\psi_{(h(n))_1}(x) \right]^{(\mathfrak{A}^*,q)} \cup \left\{ y_{i-1} \right\}_{0 < i < n} \right) = \emptyset,$$

then $\mathfrak{O}_{(h(n))_0} - [\psi_{(h(n))_1}(x)]^{(\mathfrak{A}^*,q)}$ is nonempty and finite. Take a $y' \in \mathfrak{O}_{(h(n))_0} - [\psi_{(h(n))_1}(x)]^{(\mathfrak{A}^*,q)}$. Then $\mathrm{Cl}(y') \cap \mathfrak{O}_{(h(n))_0}$ is open, infinite and contains y'. Hence there is a y such that

$$y \in \mathcal{O}_{(h(n))_0} \cap ([\psi_{(h(n))_1}(x)]^{(\mathfrak{A}^*,q)} - \operatorname{Int}[\psi_{(h(n))_1}(x)]^{(\mathfrak{A}^*,q)}).$$

Let $\emptyset = \{x_{i-1}\}_{i \in \omega}$ and $q_{\langle a,b \rangle}$ be the topology generated by q, \emptyset , and $N - \emptyset$. \emptyset and $N - \emptyset$ are infinite because both of the sets $\{m|(h(n))_2 = 0\}$ and $\{n|(h(n))_2 = 1\}$ are infinite.

Now $a \in \mathbb{O}$ and $b \notin \mathbb{O}$ and each set is infinite so all we need to show is that $(\mathfrak{A}^{\#}, q) \prec_{\mathcal{E}(O)} (\mathfrak{A}^{\#}, q_{\langle a,b \rangle})$.

We show this by induction on the number of occurrences of Qx. Since $q \subseteq q_{\langle a,b\rangle}$ we need only to show one direction. So assume that $(\mathfrak{A}^{\#}, q_{\langle a,b\rangle}) \models Qx\varphi(x)$ and $(\mathfrak{A}^{\#}, q) \models \neg Qx\varphi(x)$ and derive a contradiction. Hence

$$\left[\varphi(x)\right]^{(\mathfrak{A}^{*},q_{\langle a,b\rangle})} = \left[\varphi(x)\right]^{(\mathfrak{A}^{*},q)} = (\mathfrak{O}_{\alpha} \cap \mathfrak{O}) \cup (\mathfrak{O}_{\beta} \cap \mathfrak{O}^{c}).$$

Either \mathfrak{G}_{α} or \mathfrak{G}_{β} is not a subset of $[\varphi(x)]^{(\mathfrak{A}^{\#},q)}$ since otherwise $\mathfrak{G}_{\alpha} \cup \mathfrak{G}_{\beta} = [\varphi(x)]^{(\mathfrak{A}^{\#},q)}$. So assume $\mathfrak{G}_{\alpha} \not\subseteq [\varphi(x)]^{(\mathfrak{A}^{\#},q)}$ since the other case follows by symmetry.

There are k, l such that $\mathcal{O}_k \subseteq \mathcal{O}_{\alpha}, \mathcal{O}_k$ basic open, $[\psi_l(x)]^{(\mathfrak{A}^{\#},q)} = [\varphi(x)]^{(\mathfrak{A}^{\#},q)}$ and $\mathcal{O}_k \subseteq [\psi_l(x)]^{(\mathfrak{A}^{\#},q)}$. Take $h^{-1}(\langle k, l, o \rangle) = m$ and we have

$$\mathfrak{O}_k - \left(\left[\psi_l(x) \right]^{(\mathfrak{A}^*,q)} \cup \left\{ y_{i-1} \right\}_{0 \le i \le m} \right) = \emptyset$$

since otherwise $\mathfrak{O}_{\alpha} \cap \mathfrak{O} \nsubseteq [\varphi(x)]^{(\mathfrak{A}^*,q)}$. Thus

$$y_m \in (\mathfrak{O}_k \cap [\psi_l(x)]^{(\mathfrak{A}^*,q)} - \operatorname{Int}[\psi_l(x)]^{(\mathfrak{A}^*,q)}).$$

If $\mathfrak{O}_{\beta} = \emptyset$ then we are done since $y_m \notin \mathfrak{O}_{\alpha} \cap \mathfrak{O}$.

572 J. A SGRO

To finish assume $\emptyset_{\beta} \neq \emptyset$. Then $y_m \in \emptyset_{\beta} \cap \emptyset^c$. Hence $y_m \in \emptyset_{\beta} \cap \emptyset_k \subseteq [\psi_l(x)]^{(\mathfrak{A}^*,q)}$, since if

$$\emptyset_{\beta} \cap \emptyset_{k} \cap \{y_{i-1}\}_{0 \le i \le m} - [\psi_{l}(x)]^{(\mathfrak{A}^{*},q)} \neq \emptyset$$

then $\mathcal{O}_{\beta} \cap \mathcal{O}_{k} \cap \mathcal{O}^{c} - [\psi_{l}(x)]^{(\mathfrak{A}^{*},q)} \neq \emptyset$ which is a contradiction. But y_{m} is a noninterior point by definition so we have a contradiction.

We have shown the result and we can prove analogously the same result for $\Delta(\mathcal{C}(Q^n)_{n\in\omega})$ via the same method.

REFERENCES

- 1. K. J. Barwise, Axioms for abstract model theory, Ann. Math. Logic 7 (1974), 221-265.
- 2. J. A. Makowsky and S. Shelah, *The theorems of Beth and Craig in abstract logic*, Trans. Amer. Math. Soc. 256 (1979), 215-239.
 - 3. J. A. Sgro, Completeness theorems for topological models, Ann. Math. Logic. 11 (1977), 173-193.
- 4. _____, Completeness theorems for continuous functions and product topologies, Israel J. Math. 25 (1976), 249-272.
 - 5. _____, The interior operator logic and product topologies, Trans. Amer. Math. Soc. (to appear).
 - 6. S. Willard, General topology, Addison-Wesley, Reading, Mass., 1970.

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Current address: 12323 Brookshire Avenue, Downey, California 90242