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INTERPOLATION FAILS FOR
THE SOUSLIN-KLEENE CLOSURE OF
THE OPEN SET QUANTIFIER LOGIC

J. A. SGRO!

ABSTRACT. In this paper we show that the Souslin-Kleene closure of the open set
quantifier logic fails to have interpolation. We also show that the notion of a
Ty-topological space is not definable in this logic. This gives a more natural proof
that it is strictly weaker than the interior operator logic.

The questions of whether the Souslin-Kleene closure of the open set quantifier
logic is the interior operator logic or even has interpolation come naturally from
the work of the author in [3], [4], and [5]. We begin by giving the formal definitions
and then the three results which settle these questions.

DEFINITION. The Souslin-Kleene closure, A(£*), of a logic £* is the logic formed
by adding the complementary pseudo-elementary classes to the elementary classes.

That is, & and Q° are PCq.(L)-classes if and only if they are ECy.(L)-classes.
See [1] for further background.

DEFINITION. Take a structure % and ¢ C % (A) and form (%, q). Ifq is a topology
on A then (¥, q) is called topological.

DEFINITION. The open set quantifier logics £(Q) and £(Q"),e, are formed by
adding quantifiers Ox and QX, n € w, to first order logic where the interpretations
of Oxqp(x) and Oxe(X), respectively, are that the sets defined by @(x) and @(X) are
open in the topology and the nth product topology. For further background see [3]
and [4].

We are now ready to state and prove the main theorems of this paper.

THEOREM 1. For each (Y, q) where N is an L-structure there is an L¥ 2 L and an
extension A* of A to L* such that if (B, r) =eoy(A¥, q) then

(Bl L, r) =40y (U 9).

PrOOF. This result is a straightforward application of the definition of A(£(Q)).

CouNTEREXAMPLE 2. The counterexample to interpolation for A(£(Q,c,)) is the
same as the one for £(Q) as presented in [3] and [4].

We will assume that interpolation holds and derive a contradiction. Let L, =
{B(x), C(x), R(x)} and L, = { B(x), C(x), P(x)}. We define ¢(R) to be

1 QxB(x) A Vy(B(y) < C(y) V R(y)) N\ @xR(x)
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and y(P) to be

Vx(C(x) » P(x)) » = Qx(P(x) A\ B(x)).
One easily sees that F p(R) — Y(P). Take A = N, i.e. the set of natural numbers
BY = {2nln €N}, C¥ = {4n|n €N}.
Define (¥, q) to be (4, BY, C*,{&, N}>.

Now since we have assumed that A(£(Q)) has interpolation there is a § €
A(L(Q)) such that F p(R) > @ and F < y(P) —> 0.

Without loss of generality we assume that (3, g) models 8 since the argument in
the alternate case is entirely analogous.

Now expand U to an L*-structure A* as in Theorem 1. We then will expand ¢
to a ¢* and define a P*" such that (¥, g) <gq, (¥, ¢¥) and (U, P™", g*)F
—y(p). This implies that (A, ¢¥) =) (¥, ¢) and (A, ¢*)E =0 which is a
contradiction.

Let y,(x), i € w, enumerate the L (Q) definable nonopen sets of (A¥, ). We
proceed by induction. For 0 we pick an x and y such that

y €[00
and
x € BY —[o(x)]™?
if possible, otherwise
x €4 —[Yo(x)]*,
Assume we have picked the sequences yq, . . .,y, and X, . . ., x,. We will now

choose x,,, and y,,, as follows. Choose, if possible, x € BX" — [y, ,(x)]*"?
such that x # y, for 0 < i < n. Otherwise pick y such that

y €Y1 ()] 0 B*
and

y#x; forO0<i<n.

This is possible since otherwise [\1/,,+l(x)](”""’ N B and BY - ¥, +,(x)](”""’
would be finite which would imply that B¥" is finite which is false.

Let P be (C*" U {x,};c.) N B and let g* be the topology generated by
qU {P*}. We claim that (X¥,g) <ggp (A*,¢®) and that (A*, P*", %)k
—¢Y(P). The second clause is straightforward. We prove the first by induction on
the number of occurrences of Qx.

If (U*, q) F Oxg(x) then (A¥, ¢¥) F Qxg(x) since ¢ C ¢*, thus assume (A*, ¢¥)
E Oxg(x) and (¥, g)F - Qxep(x) and derive a contradiction. Thus [@(x)[*"? =
P™". But there is a k such that [p(x)[""? = [, (x)]*"? so by the definition of
P™ either

X € P —[¢(x)]®"®
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or
Y e[%(x)](a*,q) - PY,

Hence a contradiction.

ReMARK. The analogous result for A(2(Q"),c,) can be proved by the same
method. Also this result shows that the interior operator logics £(7) and £(I"), <.,
as defined in [3] and [5] strictly contain A(£(Q)) and A(E(Q"),c.)s Tespectively,
since they both have interpolation by [5].

By [2] we know that because A(2(Q)) and A(E(Q"),¢,) do not have interpola-
tion they do not have a Beth definability theorem.

However this result of strict containment can be improved by giving a more
natural counterexample in the topological sense.

DEFINITION. A topological space is called T, (Minkowski), if and only if for each
x # y there is an open set containing one but not the other.

We can equivalently define a T-space as a space where unequal points have
unequal closures. See [6].

The class of T,-spaces is the class of models of the £(I) sentence

VxVy(x #y = (Iy(y # x) V Ix(x #y))).

However we will now prove that the class of T, models is not a basic elementary
class of A(£(Q)).

Take A to be 2N = {f|f: {0, 1} >N} and L = &.

Define a pseudometric by d(x, y) = |x(0) — y(0)|. Then the topology that d
generates, call it g, is generated by the closures of points and every open set is
infinite. (%, ¢) also is not a T,-space since the closure of a point, which is infinite, is
the closure of any point in it.

Now we will construct the counterexample using the following theorem.

THEOREM 3. There is a topology q* such that (A, q®) is a Ty-topology and
&, 9) =aeen®, ¢%).

PRrOOF. To show this result we expand % and L to A* and L* as in Theorem 1
(taking pains to add functions to the language to pick out noninterior points from
definable nonopen sets as in [3]).

Given a pair a, b we will define a topology ¢, such that *, 9)
<3(Q)(9I#, 4(apy)» @ and b have unequal closures, and q,;, is generated by the
closures of points and every open set is infinite. This is the same topological
property of (%, g) which we use.

We then iterate this construction through all distinct pairs and take the union
(see [3]) which will be T, and satisfy the conclusion to the theorem.

Define x_, = a and y_, = b. Take h to be a bijection from N into N X N X 2.
Let y,(x), i € w, enumerate the L{’(Q) definable nonopen sets and let 0,, i € o,
enumerate the closures of points, which is a basis for g.

Assume we have defined x_, ..., X,_pYV_15 .- +5 Vo_1- We now will define x,
andy,.
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Assume (h(n)), = 0. Pick an x such that x #y,, -1 <i < n — 1, and,

* *
x € [Ynmn(¥) ] and O iy, S [ Yy (¥) ]
or

u*,
x € Ouiane = ([¥oremn®)]® P U (M- }ocicn)
and sety, = y,_,;and x, = x.
Otherwise pick a

Y € Ohimpo N ([tl/(h(n».(x)])(% @) _ Int([;[/(h("))l(x)](a*,q))
and

x € [Woniam ()]0
and sety, = y, x, = x, where Int(X) is the interior of the set.
If (h(n)), = 1 then switch x and y.
This definition is possible because if

O € [¥eaam()] 2
and

un*,
Ocnenmo = ([Yerm) ] P U {¥ic1)ocicn) =D
then 9(,,(,,»0 [xlz(,,(,,))l(x)] S s nonempty and finite. Take a y' € 0(,,(,,»0
[4/(,,("))l(x)] *9, Then CI(y") N Ohny, 1S OPen, infinite and contains y’. Hence there
is a y such that

7 € Ouatapo N ([¥eaem ) ]® ™ = Int[aeay, () ]*0).

Let O = {x,_,};c, and g, be the topology generated by ¢, 0, and N — 0. 0
and N — O are infinite because both of the sets {m|(h(n)), = 0} and {n|(h(n)), =
1} are infinite.

Now a € O and b &€ O and each set is infinite so all we need to show is that
&%, 9 <E(Q)(2[#’ 9apy)-

We show this by induction on the number of occurrences of Qx. Since ¢ C g,
we need only to show one direction. So assume that (A¥, 9¢apy) F Oxp(x) and
(U*, ) E = Oxe(x) and derive a contradiction. Hence

[(p(x)](v"’“”) = [q,(x)](%l’,q) =(©,n0uU (gﬂ n o).

Either O, or Og is not a subset of [@(x)[™®"? since otherwise O, U O, =
[@(x)]®*9. So assume O, ¢ [@(x)]™ ? since the other case follows by symmetry.

There are &, / such that , C 0,,0, basic open, [y,(x)|* ? = [¢(x)]*"? and
Or ¢ [Y(x)I®"9. Take h~'(<k, I, 0)) = m and we have

- ([‘Pl(x)](l*,q) ) {yi—l}0<i<m)v= )
since otherwise O, N O ¢ [@(x)]™ 2. Thus
€ (@k N [\[/,(x)](r’") - Int[zp,(x)](’*"’)).
If 05 = & then we are done since y,, & 0, N 0.
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To finish assume Op . Then y, € O N O°. Hence y,, € 05N O, C
[, (x)]®", since if

O N Ok N {Viz1}ocicm _[‘Pl(x)](a Dt
then 05 N O, N O° — [Y(x)]®"P % & which is a contradiction. But Ym IS a
noninterior point by definition so we have a contradiction.

We have shown the result and we can prove analogously the same result for
A(B(Q™),e.) Vvia the same method.
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