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INTERPOLATION FAILS FOR

THE SOUSLIN-KLEENE CLOSURE OF

THE OPEN SET QUANTIFIER LOGIC

J. A. SGRO1

Abstract. In this paper we show that the Souslin-Kleene closure of the open set

quantifier logic fails to have interpolation. We also show that the notion of a

r0-topological space is not definable in this logic. This gives a more natural proof

that it is strictly weaker than the interior operator logic.

The questions of whether the Souslin-Kleene closure of the open set quantifier

logic is the interior operator logic or even has interpolation come naturally from

the work of the author in [3], [4], and [5]. We begin by giving the formal definitions

and then the three results which settle these questions.

Definition. The Souslin-Kleene closure, A(£*), of a logic £* is the logic formed

by adding the complementary pseudo-elementary classes to the elementary classes.

That is, ß and ßc are PCe.(L)-classes if and only if they are ECA(e.)(L)-classes.

See [1] for further background.

Definition. Take a structure 21 and q Q 9(A) and form (31, q). Uq is a topology

on A then (21, q) is called topological.

Definition. The open set quantifier logics £(£) and t(Q")n£u are formed by

adding quantifiers Qx and Qx, n E u, to first order logic where the interpretations

of Qxcp(x) and Qx<p(x), respectively, are that the sets defined by <p(x) and <p(x) are

open in the topology and the nth product topology. For further background see [3]

and [4].

We are now ready to state and prove the main theorems of this paper.

Theorem 1. For each (31, q) where 91 is an L-structure there is an L* D L and an

extension 31* o/3i to L* such that if (93, r) eeeê^SI*, q) then

08 Í L, r) =i(e(ß)) (3Í, q).

Proof. This result is a straightforward application of the definition of A(£(ß)).

Counterexample 2. The counterexample to interpolation for A(£((2„"eu)) is the

same as the one for £(Q) as presented in [3] and [4].

We will assume that interpolation holds and derive a contradiction. Let L, =

{B(x), C(x), R(x)} and L2 = {B(x), C(x), P(x)). We define <p(/?) to be

-, QxB(x) A Vy(B(y) ~ C(y) V R( v)) A QxR(x)
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and $(P) to be

\/x(C(x) -> P(x)) -» -, Qx(P(x) A £(*))•

One easily sees that N <p(7?) —> ̂(P). Take ,4 = N, i.e. the set of natural numbers

B% = {2n\n G N),       Ca = {4w|w G N}.

Define (31, <?) to be (A, B%, Ca,{0, N}>.

Now since we have assumed that A(t(Q)) has interpolation there is a S 6

A(ß(Ö)) such that t<p(R)^9 and N -.«KP) -» -i 0.

Without loss of generality we assume that (91, q) models 9 since the argument in

the alternate case is entirely analogous.

Now expand 91 to an L*-structure 91* as in Theorem 1. We then will expand q

to a q* and define a P%* such that (9I#, q) <£iQ) (9I#, q#) and (91, T>a#, <?*)N

-i<Kp). This implies that (91, q#) =A(£(ß)) (9t, q) and (91, q*) N -i0 which is a

contradiction.

Let ¡¡¡¡(x), i G w, enumerate the L*(Q) definable nonopen sets of (9l#, q). We

proceed by induction. For 0 we pick an x and j» such that

,E[*0(*)]<"*'>

and

xe**#-L*o(*)](*#,,)

if possible, otherwise

xBA-[ux)r''q).
Assume we have picked the sequencesy0, ■ ■ ■ ,y„ and x0, . .. , xn. We will now

choose xn+x and yn+x as follows. Choose, if possible, x G 7ia — [<r,n+i(x)Ft ?)

such that x ¥= y,Tor 0 < i < n. Otherwise pick^ such that

y e[*B+1(*)]<*#«> n B*'

and

v ^ x,    for 0 < i < n.

This is possible since otherwise [xp„+ .(xtf**^ n 5a# and 7ia# - Wn+X(x)f**^

would be finite which would imply that 7?a   is finite which is false.

Let 7>a# be (Ca# u {x,}lsJ n 7ia* and let q* be the topology generated by

qU{P*"}. We claim that (91*, q) <m) (91*, <?*) and that (91*, ,Pa#, ?*) N

-i <KP). The second clause is straightforward. We prove the first by induction on

the number of occurrences of Qx.

If (91*, q) V Qx<p(x) then (91*, q*) t Qx<p(x) since q Ç q*, thus assume (91*. q*)

t Qx(p(x) and (91*, q)t -i Qx<p(x) and derive a contradiction. Thus [<p(x)](a 'q) =

7>a#. But there is a A: such that [<p(x)f**^ = [^(jc)]^*'* so by the definition of

Pa# either

^^-[^)f')
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or

v, £[,fe(*)]<*#«>-P*#.

Hence a contradiction.

Remark. The analogous result for A(£((2")n6u) can be proved by the same

method. Also this result shows that the interior operator logics £(/) and £(/")„ew

as defined in [3] and [5] strictly contain A(£(g)) and A(£(ö")n6u), respectively,

since they both have interpolation by [5].

By [2] we know that because A(£(g)) and A(£(ö")„eu) do not have interpola-

tion they do not have a Beth definability theorem.

However this result of strict containment can be improved by giving a more

natural counterexample in the topological sense.

Definition. A topological space is called T0 (Minkowski), if and only if for each

x =£ y there is an open set containing one but not the other.

We can equivalently define a r0-space as a space where unequal points have

unequal closures. See [6].

The class of r0-spaces is the class of models of the £(/) sentence

VxVy(x ¥> y -» (Iy(y * x) V lx(x ¥=y))).

However we will now prove that the class of T0 models is not a basic elementary

class of A(£(g)).

Take 31 to be 2N = {/|/: {0, 1} -» N} and L = 0.
Define a pseudometric by d(x,y) = \x(0) — y(0)|. Then the topology that d

generates, call it q, is generated by the closures of points and every open set is

infinite. (21, q) also is not a T0-space since the closure of a point, which is infinite, is

the closure of any point in it.

Now we will construct the counterexample using the following theorem.

Theorem 3. There is a topology q* such that (21, q*) is a T0-topology and

(21, q) =«myW, q*).

Proof. To show this result we expand 21 and L to 21* and L* as in Theorem 1

(taking pains to add functions to the language to pick out noninterior points from

definable nonopen sets as in [3]).

Given a pair a, b we will define a topology <7<a,¿> such that (31*, q)

^U&ßL** a(a,b>)> a and b nave unequal closures, and <7<aji> is generated by the

closures of points and every open set is infinite. This is the same topological

property of (31, q) which we use.

We then iterate this construction through all distinct pairs and take the union

(see [3]) which will be T0 and satisfy the conclusion to the theorem.

Define x_x = a and v_, = b. Take A to be a bijection from N into N X N X 2.

Let \p¡(x), i E «, enumerate the LA(Q) definable nonopen sets and let 0,, i E w,

enumerate the closures of points, which is a basis for q.

Assume we have defined x_x, . . . , xn_x, y_„ . . . , y„_x. We now will define xn

andy„.
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Assume (h(n)\ = 0. Pick an x such that x ¥= y¡, -1 < i < n — 1, and,

x E[>pWn))l(x)]^ and 0(A(n))o £[*Wl0)l(x)]<"**>

or

* e 0<*(»))o - ([*«.»,(*>]<r,*) U  U-l}0<l«).

and set y„ = y„_, and x„ = x.

Otherwise pick a

> e <W»o n ([^(-)).W])(,t#,,) - Int([^(n))l(x)]<a#'*))

and

xE[^(n))l(x)]^>

and set^ = y, xn = x, where Int(Jf) is the interior of the set.

If (h(n))2 = 1 then switch x and v.

This definition is possible because if

e(M.».t t***,«]«™.

and

<W - ([*<«.».(*)]("*,,) U U-,}0<,<„) = 0.

then 0{A(n))o#- [^„».(x)]*"^ is nonempty and finite. Take a y' E 0w„))o -

IyVcO) (x)](3l*''7)- Then Cl( y') n 0(/,(„» is open, infinite and contains y'. Hence there

is a v such that

y G 6(*(»))o n ft*^*)]™ - int[^n))l(*)f #->).

Let 0 = {x,-i},Su and ?<„,/,> be the topology generated by q, 0, and N — 0. 0

and N - 0 are infinite because both of the sets {m\(h(n))2 = 0} and {n\(h(n))2 =

1} are infinite.

Now a £ 0 and b £ 0 and each set is infinite so all we need to show is that

(»*, 4) <eiQ0*, W'
We show this by induction on the number of occurrences of Qx. Since # Ç q<ayby

we need only to show one direction. So assume that (21*, 9<ai>) 1= Qx<p(x) and

(31*, q) 1= -i Qxq>(x) and derive a contradiction. Hence

[ç>(x)]<"#-«<->> =[(p(x)](3t#'9) = (0a n 0) u (0„ n 0e).

Either 0a or Üß is not a subset of [<p(x)f**'q) since otherwise 0a u 0^ =

[<p(x)](a#'?). So assume 0a (f [<p(x)]<a '^ since the other case follows by symmetry.

There are k, I such that 6k C ©„,0* basic open, [^,(x)fm"'9) = M*)?*""* and

6t $ [MOf"*-*. Take A-1«*. /> o» = m and we have

since otherwise 0a n 0 $ [«pWP*'* Thus

*. e (0, n [*<*)]*•*> - lnt[^)](a#w)).

If 0£ = 0 then we are done since ym £ 0a n 0.
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To   finish  assume   0^ ^ 0.   Then ym G 0^ n 0C.   Hence ym G 0^ n 0* ç

[>M*)](ät#,,), since if

%nekn{yi_x}o<i<m-[*l(x)Y*'">^0

then  0^ n 0* n 0C - [^/(^)]<9i#'?) ¥= 0 which is a contradiction.  But ym is a

noninterior point by definition so we have a contradiction.

We have shown the result and we can prove analogously the same result for

A(£(ö")„eJ via the same method.
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