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UNIONS OF CELLS WITH APPLICATIONS TO VISIBILITY

L. D. LOVELAND

Abstract. A crumpled «-cell C in E" is proven to be an n-cell (n ^ 4) when it is

known to contain two n-cells C, and C2, one of which is flat, such that Bd C C

(Bd C,) U (Bd C2). This theorem is applied to show that C is an n-cell if its

boundary is the union of two closed sets each of which is seen from some point of

Int C. Examples are given to show that flatness of one of C, and C2 is necessary in

the first theorem and to show that two is the largest integer for which either

theorem is true.

1. Introduction. A crumpled n-cell C in E" (n ¥= 4) is known to be an «-cell if it is

the union of two n-cells [7]. A modification (see Theorem 2.1) of this result is

proven here by showing that C is an «-cell if there are two «-cells Cx and C2 in C,

one of which is flat in E", such that Bd C c (Bd C,) u (Bd C2). Notice that the

modification weakens the hypothesis that C = C, u C2 but imposes flatness on at

least one of Cx and C2. Example 2.5 shows that this flatness condition is required.

Generalizations to more than two n-cells are false as Pixley's examples [8] show.

Theorem 2.1 is applied in §3 to show that the interior of a crumpled «-cell C in

E" is 1-ULC if its boundary is the union of two closed sets each of which is seen

from some point of Int C. A set X in Bd C is seen from a point p of Int C if, for

each x E X, the straight-line segment [p, x] intersects Bd C only at x. The word

"visible" in place of "seen" seems more natural, but "visible" has a slightly

different meaning in the literature ([3, p. 326], [6, p. 400]). The set X is visible from

a point p if, for each x E X, the entire ray from p through x intersects Bd C only at

x. Thus a visible set is seen but a seen set may not be visible. Example 3.3 shows

that being the union of three seen, closed sets is not sufficient evidence to conclude

that an (n — l)-sphere in E" bounds an n-cell.

Earlier work on visible taming conditions was done by Cobb who proved that a

2-sphere S in E3 is tame if it is locally tame except possibly at points of a closed

subset X of S which is visible from a point of Int S. Although Cobb's work has not

appeared, Burgess and Cannon [3, p. 327] have provided an outline of a proof. The

techniques of their proof are also applicable to "seen" sets and will be used here.

Daverman [6, Example 9.4] has an example of a wild (n — l)-sphere S in E"

(n > 4) that is locally flat modulo a Cantor set visible from Int S. The inflation

technique described by Daverman in §9 of [6] has proven particularly useful for
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constructing in E" (n > 4) wild (n - l)-spheres possessing certain geometric prop-

erties known to prohibit wildness if n = 3. In view of such examples (again, see [6,

§9]) it may be somewhat surprising that the geometric property of visibility works

for n > 3.

The paper concludes with a brief §4 in which two localized versions of the main

theorems of §§2 and 3 are given. Though much more cumbersome to state, these

local versions are established by the proofs given for their respective global

analogues.

2. Flatness of the union of two cells. Theorem 1.2 of [7] states that a crumpled

n-cube in E" is an «-cell if it is the union of two «-cells and if n ¥= 4. Perhaps of

importance, other then in its applicaton to visibility theorems in the next section, is

the following variation of the result of [7]. The proof given for this theorem

depends directly on Cannon's Invariance of 1-ULC [5, Theorem 4.2] and also

establishes a more general local version given in §4. A crumpled «-cube is the

closure of a bounded complementary domain of an (n — l)-sphere topologically

embedded in Euclidean «-space E".

Theorem 2.1. The interior of a crumpled n-cube C in E" is l-ULC if there exist

two n-cells C, and C2 in C such that Bd C c (Bd C,) U (Bd Cj) and C2 is flat in

E". Furthermore C is an n-cell if « J= 4.

Proof. Let S, = Bd Cx, S2 = Bd C2, S = Bd C, p G S, and let S be a positive

number. Since C, is an «-cell there is a positive number a such that each loop in

N(p, o) n Int C, can be shrunk to a point in N(p, S) n Int C,. Since S2 is flat it

follows from Theorem 2C.6 of [5] (see [5, p. 61] for the case « > 3) that E" — S is

1-ULC in E" - S n S2. Consequently there is a positive number 8 such that each

loop in N(p, 8) n Int C can be shrunk to a point in N(p, o) — S n S2. To show

Int C is 1-ULC it suffices to show that each loop in N(p, 8) n Int C can be shrunk

to a point in N(p, & ) n Int C.

Let D denote a 2-cell, and let/be a map taking Bd D into N(p, 8) n Int C. By

the choice of 8,/extends to a map, which is still called/, of D into N(p, o) — S n

S2. The component K of D — f~x(S n f(D)) containing Bd D contains a finite

collection of disjoint simple closed curves whose union separates Bd D from

f~\S n f(D)). Since f(D) n S2 = 0 these curves can be chosen close enough to

/_1(5 n f(D)) to insure that their images under/ lie in Int Cx. Moreover/(AT) c

N(p, o), so these simple closed curves in K shrink to a point in N(p, &) n Int C,.

Consequently/| Bd D can be extended to map all of D into N(p, S ) n Int C.

Bing [2] proved that C is a 3-cell if its interior is 1-ULC. A discussion of the

analogous result for « > 5 is contained in §5 of [6] where references are given.

Corollary 2.2. If C, and C2 are n-cells in S" (n ^ 4) such that C2 is fiat and

S" - (C, u C2) has an (n - \)-sphere S as its boundary, then S bounds an n-cell

containing Cx U C2.

Theorem 2.3. A crumpled cube C in E3 is a tame 3-cell if there exist two tame

3-cells in C such that Bd C lies in the union of their boundaries.
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Proof. From Theorem 2.1, C is a 3-cell. Let C, and C2 be two tame 3-cells as

hypothesized. It follows from Theorem 4.1 of [4] that C, and C2 are *-taming sets

since they are tame. Then C, u C2 is a *-taming set [4, Theorem 3.7(1)], and it

follows that C is tame.

Example 2.4. The failure of Theorem 2.3 for n > 3 can be demonstrated by

letting C* be the inflation in S4 of the Alexander Horned Cube as described by

Daverman [6, §9], and then taking C as the closure of S* - C*.

Example 2.5. In Theorem 2.1 and its corollary it is essential that at least one of

the two cells C, and C2 be flat. To illustrate this one can take C to be the Alford

crumpled cube [1], although any crumpled cube whose boundary is locally tame

módulo a subset of a simple closed curve J in Bd C will do, provided it is not a

3-cell. Let Dx and D2 be disks whose union is Bd C and whose common boundary

J contains the wild points of Bd C. Of course each £>, may be assumed locally

polyhedral at its interior points, so each Int D¡ may be moved slightly toward Int C

to obtain a disk D¡ such that £>, n D¡ = J. Then D¡ u D¡ bounds a 3-cell C, in C,

and Bd C c (Bd C,) u (Bd C^.

3. Applications to visibility. It is easy to see that an (n — l)-sphere S in E" is flat

if S is seen from some point of Int S. The next theorem generalizes this observation

to the situation where S is the union of two seen closed sets, however, it turns out

that flatness from the seen side (except in £3 where S is tame from both sides) is all

that can be expected. Example 3.3 illustrates this fact. Example 3.4 shows that there

is no generalization to the case where S is the union of three or more seen closed

sets.

Lemma 3.1. If the closed subset X of the (n — \)-sphere S in E" is seen from a

point x in Int 5, then there is a flat n-cell C in S U Int S such that x E Int C,

X c Bd C, and Bd C is visible from x.

Although the definitions of "seen" and "visible" differ slightly, the proof of

Theorem 9.3.2 outlined in [3] also establishes Lemma 3.1.

Theorem 3.2. The interior of a crumpled n-cell C in E" is l-ULC if there exist

closed sets Xx and X2 in Bd C and points xx and x2 in Int C such that Bd C = Xx u

X2 and each X¡ is seen from x, (/ = 1, 2). Thus for n ¥= 4, C is an n-cell.

Proof. Let 5 = Bd C and apply Lemma 3.1 twice to obtain two flat n-cells C,

and C2 in C such that S C (Bd C,) u (Bd C2). Then Theorem 3.2 follows im-

mediately from Theorem 2.1.

Example 3.3. An example of a 4-cell C in EA is now described so that Bd C is

the union of two closed sets seen from Int C while Ext Bd C is not 1-ULC. Thus

one cannot conclude from the hypothesis of Theorem 3.2 that Bd C is nice from

both sides (except when n = 3 as demonstrated in the proof of Theorem 2.3).

The example C is constructed by inflating the Alexander Horned cube C1 in

E* X 0 to a 3-sphere S in EA (see [6, p. 400]) and defining CasSu Ext S. It is

particularly easy to find the two seen closed sets if two points x and.y are chosen

above and below C1, respectively, before inflating C, because then one may inflate
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toward these points rather than vertically. The two closed sets X and Y are just the

upper and lower hemispheres, respectively, of S since X is seen from x and Y from

y. Of course C is not really a crumpled 4-cube but this can be corrected by

carefully running a tube out close to E3 X 0 and then letting it balloon around S

so as to interchange the interior and exterior of S. This puts both x and y in Int S,

but X and Y need to be enlarged to insure their union is still the entire sphere.

Example 3.4. There is a crumpled cube C in E3 such that its boundary is the

union of three closed sets A",, X2 and X3 where each X¡ is seen from a point x¡ in

Int C, yet C is not a 3-cell. In fact the Fox-Artin crumpled cube, whose comple-

ment is pictured in [3, p. 270], can be described to satisfy these conditions with the

three points x¡ collinear.

The main idea for the description is given in §3 of [7]. Let A' be an arc running

through the double points of a regular projection P of the Fox-Artin arc F into the

xy-plane m (see Figure 4 of [3, p. 270]). There is a homeomorphism h of it onto

itself taking A ' to an arc A on the x-axis. Now an equivalent embedding of F can

be constructed by lifting small "over-arcs" of h(P) into the vertical half-plane

{(x,y, z)\z > 0} and making small adjustments in the xv-plane. Thus we may

assume F lies on a 3-page book Ti with two pages in it, binding .4, and a third page

in the xy-plane (see Figure 1 of [7]).

Let C be a cube such that Ti divides C into three cubes C'x, C2 and C3 each with

vertical and horizontal sides. By drilling a small tapered hole in C along F we

obtain the Fox-Artin crumpled cube from C. However before drilling choose three

collinear points xx, x2 and x3 in the interiors of C[, C2 and C¡¡, respectively. Now

the tube is drilled along F creating grooves in the C/. Careful drilling consistent

with the location of the x¡ will transform C to the desired crumpled cube C and

C{, C2 and C3' to 3-cells C,, C2 and C3 such that Bd C, is seen from x¡. The closed

sets X¡ are taken as (Bd Q n (Bd C).

4. Local versions of the main theorems. The proofs given for Theorems 2.1 and

3.2 actually prove the more general theorems given in this section. These localized

versions will be needed in subsequent work.

Theorem 4.1. The interior of a crumpled n-cell C in E" is l-LC at each point in

the interior of (n — l)-cell D in Bd C // there exist two n-cells C, and C2 in C such

that D c (Bd C,) u (Bd C2) and C, is flat in E". Furthermore Bd C is locally flat at

each point of Int D if n ¥= 4.

Theorem 4.2. The interior of a crumpled n-cell C is l-LC at each point in the

interior of an (n — \)-cell D in Bd C // there exist two closed sets Xx and X2 and two

points xx and x2 in Int C such that D = Xx u A"2 and X¡ is seen from x¡ (i = 1, 2).

For « ¥= 4 it follows that Bd C is locally flat at each point of Int D.
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