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A NOTE ON THE BOREL FORMULA

RONALD M. DOTZEL

Abstract. A new proof of the Borel formula is obtained for G = (Zp)r actions on

spaces X having H:(X; Zp) = 0, i] ¥= n (some n) and Hn(X; Zp) = Zp © Free ZpG

module. Each X" must be a Z^-homology n(H)-sphere and then n — n(G) =

2(i(//) - (G)), sum running over corank 1 subgroups. A discussion of examples

follows.

1. Introduction. If an elementary abelian p-group G = (Zp)r acts on a Z^-homol-

ogy n-sphere, then Smith theory [3, Chapter 3] says that the fixed point set of a

subgroup H of G is a Zp-homology n(//)-sphere. If p is odd n — n(H) must be

even for all H. The Borel formula [2, p. 175] states that, moreover, n — n(G) =

2(n(//) — n(G)) where the sum runs over all subgroups H oî G such that

G/H = Zp (i.e. H has corank 1).

In [4] the following converse result was established.

Theorem A. Let X be a finite CW complex with a cellular action of G — (Zp)r,

such that each XH (H ^ 0) is a Zp-homology n(H)-sphere. Suppose, moreover, that

there exists an n such that H¡(X; Zp) = 0, / ^ n, and so that if p is odd, n — n(G) is

even. Also assume the Borel formula holds for this action (and n). Then Hn(X; Zp) =

Z„ © F where F is Z„ G free.p p    j

This result was established by constructing a linear action of G on S" and an

equivariant map $: X ^> S" which induces Z^-homology isomorphisms <bH: XH -*

(S")H, H ¥= 0, and a Z^-homology epimorphism when H = 0.

In the present paper we establish the converse to Theorem A which provides an

extension of the Borel formula. I am indebted to Professor Glen Bredon, who first

suggested the approach I used here, and to Professor Gary C. Hamrick for many

helpful conversations.

2. We begin with

Proposition 1. Let G = (Zp)r (r > 1) act cellularly on X, a finite CW complex

such that each XH (H =£ 0) is a Zp-homology n(H)-sphere. Suppose there is an

integer n so that H¡(X; Zp) = 0, i ^ n, and Hn(X; Zp) = Zp® F, where F is free

over ZpG. Then the Borel formula holds, i.e.,

n- n(G) = ^(n(H)-n(G)),

sum extending over all corank 1 subgroups H in G.
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Proof. Let k be the cellular dimension of X. The proof proceeds in roughly two

stages. At first we construct inductively a finite CW complex, Yk_x, with the

property that Yk_x is k-dimensional, k — 1-connected. Yk_x will also have the

property that

Ext^k-\Hn(X; Zp), Zp) = Ext^G(77,(y,_i; Zp), Zp)

for all s > 2.

On the other hand we define a finite CW complex Yk_x which satisfies the

hypothesis of Theorem A in the introduction, for the integer m = 2(«(77) — «(G))

+ n(G) (not, at this point, necessarily equal to «). It will result that

Extg¿k-\Nm{Xi zp), zp) = Ext4+G(*-m)("„,(y*-.; Zp), Zp)

for any s > 2. Since G has nonperiodic group cohomology for r > 1, it follows that

« = m, which is what we wanted to show.

To begin with, we will use extensively the fact that whenever /: M —> T © P is a

ZG epimorphism of ZG modules with M free, P projective and T consisting of

torsion prime top, ker/is ZG projective. This follows from [7, 4.12] once it is clear

that T is cohomologically trivial. But multiplication by | G | on T is an automor-

phism, which induces an automorphism on cohomology. Coupling this with the

fact that H*(G, ■) has exponent |G| (see Cartan-Eilenberg, Chapter XII, e.g.), it

follows that T is cohomologically trivial (this argument was pointed out to me by

R. Oliver).

We may assume X is 1-connected (by suspending). Since H¡(X; Z) is torsion

prime to p, we may attach free orbits of cells in dimensions < « to produce the

complex y such that Y is « - 1-connected and 77„(y; Z) = 77„(*; Z) © N, N a

ZG-projective (for a nice exposition of the procedure of "equivariantly attaching

cells", see [5, §1]). Now add free orbits of « + 1-cells to kill off N. This produces a

complex X0 with Hn(X0; Z) = Hn(X; Z) and Hn+x(X0; Z) - Hn+x(X; Z) ©

N0, N0 a ZG-projective. Tf,.(Ar0; Z) = H¡(X; Z), / > « + 1.

Add free orbits of « + 1-cells to X0 to kill off Hn(X; Z). This creates an

«-connected, k-dimensional complex Yn, so that H¡(Yn) = H¡(X), i > n + 1, and

0^ Hn+x(X0; Z)^ Hn+x(Yn; Z)^Kexdn+x^0 (*)

where 0 -» Ker 9„ + 1 -> Hn+x(Yn, X0; Z) -> 77„(A"0; Z) -» 0. Now if k = n + I, it

follows that Hn+x(X0; Z) = A/0, since Hn+x(X; Zp) = 0. By [7, 3.5], N0 ® Zp is

Zp G free. After tensoring the above sequences with Zp, it follows that

ExfZpC(Hn(X; Zp), Zp) = Exfz;c(T7n+,( Yn, Zp\ Zp)    for any s > 2.

If k > n + 1, we show below how to construct Yn+V which is « + 1-connected

and /c-dimensional, from Yn. If need be, the following argument may be repeated

until one obtains Yk_,.

Add free orbits of « + 2-cells to Yn to kill off T7n+1(A'0; Z) (see sequence (*)).

This produces a complex y„'+1 with 77n + ,(y„'+1; Z) = Ker 3rt+1 and

Hn+i(Yñ+\'> z) = Hn+2(xo'> z) © ^i. where ^i is ZG-projective.
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Now add free orbits of n + 2-cells to y„'+1 to form Yn + X and to kill off Ker d„+1.

y„+1 is n + 1-connected, k-dimensional. Further, we have:

^n+ 1

Hn + 2ÍYn+\>   K+Ù  Z) -* Hn+\{Yn+l> X0>  Z)   ~»     Hn(X()\  Z)-»0

where the left-hand map is the composition

nn+2(Yn+t, y;+1; z) -»//n+I(y„'+1; z)«Ker 3n+1 ~//„+1(y„'+1,*0; z)-

We also have the exact sequence,

0-*Hn+2(Y¿+l;Z)-»Hn+2(Yn+l,Z)

-^> Hn+2(Yn+x, yn'+1; Z) ->->  //„+1(y„'+1; Z).

Now if k = n + 2, it follows that Hn + 2(Y^+X; Z) = Nx, a Z(J-projective, since

Hn+2(X; Zp) = 0. Thus Hn+2(Y^X; Zp) is ZpG free. As before we have the exact

sequences

0- Hn + 2(Y^+X; Zp) -» Hn + 2(Yn+x; Zp) ^ Ker 9„+2 0 Zp,

0-*Ker 3n+2 ® Z, -> //„+2(y„+1, y„'+1; Z,) -** //fl+1(^+1; Z„).

Then

ExfZpC(//„+1(y„'+1; Z„), Zp) = Exfz;<I(//n+2(yn+1; Z„), Z,)

and

ExfZpG(Hn(X; zp), zp) = Exfz;(i(//n+1(y;+1; zp), zp)

since //„+1(yn'+1; Zp) = Ker 3n + 1 <8> Zp and where 5 is arbitrary, s > 2.

If k > n + 2, we have the exact sequence

0 - //„ + 2(^'+.; Z) -» //„ + 2(yn+1; Z) -~ Ker d„+2.

Since //n+2(y„'+i; Z) = H„+2(X0; Z) © /V,, we can repeat the procedure above to

reach, eventually, Yk_x. By adding additional free orbits of cells, if necessary, we

may assume k — m > 2.

The same argument as above shows that for any s > 2,

Extz;c(*~n)("n(*; ZpI Zp) = Ext^G(//,(y,_,; Zp), zp).

Now, on the other hand, consider Yk_x = Yj£\ U YkF_x, where Y[_x = U^^5*" i

= U/z^o ^r//- We claim that Hi(Yk_x; Zp) = 0 for i =t= m. This amounts to showing

that H^(\JH¥=0XH; Zp) = 0 for * > m. First of all, by induction on the rank of

G, r, we may assume the Borel formula for any elementary abelian p-group of

lesser rank. This induction implies that n(H) < m, for H ¥= 0. Letting S be any

nonempty collection of nonzero subgroups of G (without loss, not containing G

itself) one actually establishes the stronger fact that H*(Uh<es XH; Zp) = 0 if

* > m. To show this one uses induction on the cardinality of S and Mayer-Vietoris.

Thus one is led to see it suffices to show that, for M0 £ S,

H*(XM°,  U XMM°; Zp) = 0,   for * > n(M0),

where the union is over S — {M0}. This latter fact is established by a double

induction on rank M0 and on the cardinality of S — {M0}.
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There are two naturally arising cases. If there is some A/, in S — {A/0} with

n(MxM0) < n(M0) one considers the homology sequence of the } triple

(XM\ U XMM", U XMM"), where the first union is over S - {M0} and the second

is over S — [M0, Mx). An application of excision establishes the result in this case.

The second case is that every M G S has n(MM0) = n(M0). Here, it suffices to

show that if Mx and M2 both have n(MxM0) = n(M2M0) = n(MQ) then n(M0) =

n(MxM2M0) (by a Mayer-Vietoris argument). To demonstrate this last property use

the fact that the Borel formula holds whenever a group of rank < r — 1 is acting.

Now since H¡(Yk_x; Zp) = 0, i' ¥^ m, and the Borel formula holds on Yk_x, by

Theorem A in the introduction (it is not hard to see that if r > 1, m — «(G) is

always even if p is odd)

HmiYk_x;Zp) = Zp®Fx,

where Fx is a free ZpG module.

Now consider C„( Yk_,, Yk_,; Zp). We have the exact sequence,

0-* Hk(Yk_x; Zp) -* CkiYk_x, Yk_x; Zp) -* . . .

-* Cm+xiYk_x, Yk_x; Zp) -+> 77m(yA:_,; Zp).

Since each C,( Yk_,, Yk_ x; Zp) is ZpG free, it follows that for s > 2,

Ext£¿k-'XHmÍYk_x; Zp), Zp) = Ext^G(T7,(y,_,; Zp), Zp).

Thus,

Ext^-W*; Zp), Zp) = Ext^k""\HmiYk_x; Zp), Zp).

But since Hn(X; Zp) and Hm(Yk_x; Zp) are both stably Zp, the result is that

Ext¿p+¿k->(Zp, Zp) = Ext^k-^(Zp, Zp).

This implies that « = m, since G has nonperiodic cohomology.    □

3. We now consider examples of Proposition 1 which are «-dimensional, « — 1

connected.

Proposition 2. Suppose that X satisfies the hypotheses of Proposition 1 and that X

is n-dimensional, « — 1 connected. Then Hn(X; Z) = Z © P, where P is ZG-projec-

tive and Z has trivial G-act ion if p is odd.

Proof. It was shown in [4] that there is a linear G-action on S" and an

equivariant map <j>: X —> S" having the properties described in the introduction.

From the mapping cone C^, we have the exact sequence

0 - Htt+1iC+; Z) -* Hn(X; Z) % H„(S"; Z) -» 7/„(C,; Z) ^ 0.

Because <£„, is a Zp -homology epimorphism we have

0^Hn+x(C^, Z)-+Hn(X; Z) -h> Im</>, « Z   (with some action).      (*)

Also, 77„(C<¡>; Z) = Zk, where (k, p) = 1 and Im <£„, = (k). One may add free orbits

of n + 1 cells to C^ to kill Hn(C^\ Z). This results in an (n + l)-dimensional,
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n-connected G-complex Y such that Hn+X(Y; Z) = Hn+x(C4¡; Z) © P, P a projec-

tive ZG module. By [6, Lemma 3], Hn+X(Y; Z) is ZG-projective and then so is

H„+X(C+;Z).

If Im <|>„ sa Z has trivial G-action then one has

Extzc(Z; ffn+1(C,; Z)) = H\G; //„+1(C,; Z)) = 0

by [6, 4.11]. Thus in this case, (*) splits.

If Im <¡>m « Z has nontrivial G-action (denoted Z "), it follows that Z ~ ®z Z ~

sb Z has trivial (diagonal) G-action and that whenever P is ZG-projective, so is

Z " <8>z P (diagonal action). This latter statement follows from the fact that

Z " <8>z ZG (diagonal action) is isomorphic, as ZG modules, to ZG. Now tensoring

(*) over Z with Z ~~ one has the exact sequence of ZG modules,

0^#„ + 1(C^;Z)®zZ-^//„(*; Z)®zZ--*Z^0. (*)'

By the argument above, (*)' splits. So,

Hn(X; Z)®ZZ~^Z® Hn+x(C¿ Z) ®z Z".

Now, tensoring again with Z~ over Z, one has Hn(X; Z)œ Z~ © Hn+x(C^\ Z).

D
As an example, one may take the wedge of a standard linear action on S" with a

bouquet of n-spheres permuted freely by G. On the other hand, suppose Y is an

n-dimensional n - 1-connected CW complex with G-action such that YH is Zp-

acyclic for each H <\G, H ¥= 0. By [6, Lemma 3], Hn(Y) is ZG-projective. Wedging

y with a linear S" would yield other examples. However, it is a result of Swan (see

[1, p. 178]) that Hn(Y) must be stably free, when G = Zp. Consequently, one can

construct projective modules P over ZG, G = (Z )f, r > 1, which could never be

realised as an Hn(Y), as above. Mainly, this is so because a necessary condition on

P is that the image of P in G0(ZG)/S be zero, where G0(ZG) is the Grothendieck

group on finitely generated ZG modules and 5 is the subgroup generated by signed

permutation modules (see [1]). As a result it is not clear precisely when a projective

ZG module can be an Hn(Y), as above. According to [1] the necessary condition

above is sufficient for G = Zp.
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