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RETRACTS IN METRIC SPACES

LECH PASICKI1

Abstract. In this paper we define S-contractibility and two classes of spaces

connected with this notion. A space X is said to be S-contractible provided that S

is a function S: X X <0, 1> X X 3 (x, a,y)^ Sx(a,y) G X that is continuous in

a and y, and for every x,y El X, Sx(0,y) — y, 5,(1, y) = x. This notion is close to

equiconnectedness, which can be defined as follows. A space X is equiconnected if

there exists a map S such that X is S-contractible and Sx(a, x) — x for all x G X

and a S I (cf. [4]). The results we obtain in the theory of retracts are close to those

that are known for equiconnected spaces. Also the thickness of the neighborhood

that can be retracted on a set in a metric space is estimated, which enables to prove

a theorem belonging to fixed point theory.

1. We repeat the notions related to equiconnectedness [2].

Definitions. A local equiconnecting function for a space X is a map A: U X / -^

X, where U is a neighborhood of the diagonal inA'Xl such that X(x0, xx,i) =

x,, i = 0, 1, and X(x, x, t) = x for every x0, x„ x £ X, t E I.

The X-extension of a subset A c X is the smallest nonempty subset A c X (if it

exists) such that A X A c U and X(A X A X /) c A. A is X-convex if A = A.

A local equiconnecting function X is stable if for every neighborhood N of any

point p E X there exists a neighborhood M such that M c N [3].

For 9L an open cover of X and n > 1 let A""(%) = {(x„ . . ., x„) £ X":

{xx, . . ., xn) c Í/ £ 'íi} with the relative topology. Let T"~x denote the standard

(n - 1) simplex in Euclidean n-space: T"~l = {(/„ . . . , tn) E R": r, > 0, 2r, =

!}•

A local convex structure for a space X consists of an open cover % and a

sequence of maps X": Ar"(%) X T"~l -+X,n> 1, such that

(i) X"(xx, ..., xn; tx, ...,/„) = \n~\xv ...,xm,...,xn;tx,...,tm,...,tn)ii

tm = o,

(ii) for every neighborhood A^ of any point p E X there exists a neighborhood M

such that X"(A/" X Tn~l) c N for all n [5].

A- is called stably LEC if it admits a local equiconnecting function, and X is LCS if

it admits a local convex structure.

If such a map X is defined on the whole X x X X I then X is stably EC or

CS respectively.
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2. Definition 1. Let a set and a function S be given that satisfy the following

conditions:

(1)5: X X I X X 3(x,t,y)r^Sx(t,y)GX,

(2) Sx(0,y) = y, Sx(l,y) = x for any x,y G X.

Then for any nonempty set A g X let coS A = inf{D c X: A c D and for any

x G A,t G I, Sx(t, D)g D}.¥ox A =0 let coS A = 0. If coS A = A then ^ is

5-convex.

The above definition is correct (i.e. the infimum exists) because for any two sets

E, D such that, for any x G A and t G I, Sx(t, D) c D and Sx(t, E) c E we have

Sx(t, D n Ti) c D and Sx(r, Z) n £) c £ which implies Sx(t, D n E) c D n E.

Proposition 1. If {As}seT is a family of S-convex sets, then r\seTAs is

S-convex.

Proof. Suppose that C\seTAs ¥= 0. For any x G n sSTA,, t G I and s G T we

have that Sx(t, r\seTAs) C As and consequently Sx(t, ns£TAs) c (1 s£TAs,

which means that nsf=TAs is S'-convex.

Definition 2. A space is 5-contractible if S satisfies the conditions (1), (2), and,

for any x G X, [Sx(t, •)} is a homotopy joining the identity with a constant map

(cf. [1, p. 22]).

Definition 3. A space X is of C type I if C is a subset of X and there exists S

such that X is S-contractible and

(3) for any x G C and any neighborhood N of x there exists a neighborhood U

such that coS U c N.

If C = X then we say it is of type I.

Obviously any stably EC is of type I.

Let (M, d) be a metric space. For the nonempty sets A, D c M and r > 0 let us

write d(A, D) = ird{d(x,y): x G A,y G D), B(A, r) = {x G M: d(A, x) < r}

and diaA = sup{d(x,y): x,y G A).

Theorem 1. Let (M, d) be a metric space and let A = A be of dA type I (dA

denotes the boundary of A) such that, for any x G A, d(x, A) = d(x, dA). Then A is

retract of M.

Proof. Let { Us}S(ET be a locally finite open cover of M \ A with a well-ordered

family of indices T and, for {as}s£T c dA, let the following condition be satisfied:

if x G Us, then d(x, as) < 2d(x, A) fox s G T ([1, p. 70]).

For x G M \ A let us consider Tx := {s G T: x G [/,} and let

cs(x) = d(x, M \ Us)/sup{d(x, M \ U,): s G Tx) (4)

and let

I x   for x G A,

r(x) = { S%(cSt(x), Sjci2(x), . . . , (\(c, (*), v) ...)))    for x G M \ A,   (5)

where [sx, s2, . . . , sn} = Tx and sx <s2 < • ■ ■ <s„ and v G A.
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It is easily seen that there always exists s £ Tx such that cs(x) = 1; then

Sa(cs(x), z) = as for z £ A. It is trivial that r(x) £ coS{B(x, 2d(x, A)) n A}. So

it follows from (3) that r is continuous on dA. Also r is continuous on M \ A as for

any x £ M \ A there exists B(x,8(x)) which meets only finitely many Us. Then Tz

is finite and fixed for z £ B(x, 5(x)), and r is a finite superposition of the same

continuous maps in B(x, 8(x)).

Proposition 2. Any metric space which is of type I is an AR(%).

Corollary I. Any metrizable space which is of type I is CS (cf. [5]).

Definition [1, p. 219]. A compact space X that is metrizable in such a way that

for any x, y E X there exists exactly one z such that p(x, z) = p(y, z) = p(x,y)/2

is called a strongly convex compactum.

Corollary 2. Any strongly convex compactum is AR (cf. [l,p. 219]).

Definition 4. A space X is of C type II provided that C c X and there exists S

such that X is S-contractible and the following condition holds:

(6) for any neighborhood AT of any x E C there exists a neighborhood U such

that for every z £ U n C and t £ / we have Sz(t, U) c W.

If C = * let us call it type II.

It is easily seen that every type I is type II.

If X is a locally compact space which is S-contractible and S is a map, and if

Sx(t, x) = x for all x £ X, then X is of type II.

Proposition 3. Let A = A be a dA type II subset of a metric space (M, d) such

that, for any x £ A, d(x, A) = d(x, dA) and M \ A is finite dimensional. Then A is

retract of M.

Proof. Let dim M \ A < n. Then we may assume that every x £ M \ A belongs

to at most n + 1 sets of { Us}ser and we follow the proof of Theorem 1. Condition

(6) then ensures the continuity of r on SA.

Theorem 2. Let A = A be a dA type II subset of a finite dimensional subspace of a

linear normed space (X, || ||). Then A is a retract of X.

Proof. We construct a dense set E in dA in a special way.

Io. Let Ex c dA n B(0, 1) be a minimal set with respect to the property that for

every x £ dA n B(0, 1), d(x, Ex) < 1. We denote the elements of Ex by the natural

numbers.

2°. We complete Ex to E2 c dA n B(0, 2) a minimal set with respect to the

property that for any x £ dA n B(0, 2), d(x, E2) < 1/2 and sign "new" points by

the further numbers, etc.

n°. We complete £„_,to£nc3^n B(0, n); for x E dA n B(0, n), d(x, En) <

\/n.

Now let E = U "_ XE„ and for an E E let

c„(x) = max{0, min{ 1,3- d(x, a„)/d(x, A)}} (7)
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and f or x G X, y G A,

px(x,y) = Sa¡(cx(x),y),

Pn(x,y)=pn-iix, S^(cn(x),y))   for« > 1. (8)

We define r: X —> A as follows:

Í x    fox x G A, . .

r(x>=)   lim p„(x,y)   fox x & A. W
V   n—»oo

The set A is contained in a finite dimensional subspace of X, which with the

linearity of norm yields that for x G 5(0, r) each of the sets A n B(x, 2d(x, A))

and A n B(x, 3d(x, A)) \ B(x, 2d(x, A)) contains at least one and not more than ¿

elements of the sets En(x), where n(x) = max{[8/<7(x, A)], [(r + l)/6]}. In view of

the construction of E we need not consider the superposition of more than k maps

because there are at most m < k coefficients c„(x) G (0, 1) before the first one that

is equal to 1. Therefore r is continuous on X \ A. The continuity on dA follows

from (6).

Definition 5. A space X is locally S-contractible if there exists S satisfying

(1), (2) and

(10) for any x G X there exists a neighborhood U such that, for any z G

U, [Sz(t, •)}!(/ is a homotopy joining the identity with a constant map.

Definition 6. A space X is locally C type I (C type II) if it is locally

S-contractible and (3) ((6)) is satisfied.

It is obvious that every LEC space is locally S-contractible and every stably

LEC space is locally type I.

Theorem 3. Let A = A be locally A type I in a metric space (M, d) such that, for

every x G A, d(x, A) = d(x, dA). Then A is a retract of D, if D is as follows.

D = {x G M: there exists e > 0 such that, for.y, z

GcoS{B(x,d(x,A) + e) n dA} and z G dA, Sz is a map}.      (11)

Proof. Let e(x) = sup{e: such that for>>, z G coS{7i(x, d(x, A) + e) n dA} and

z G dA, Sz is a map) and let (x„)n£N be any sequence convergent in D, say to x0.

We have lixn„_>.xe(xn) < e(x0) because otherwise there would exist « G N and

8 > 0 such that Ti(x0, d(x0, A) + e(x0) + 8) c B(xn, d(x„, A) + e(xn)). Similarly

e(x0) < lixxin_tooe(xn) because otherwise Ti(xn, d(xn, A) + e(xn) + 8) c

Ti(jc0, d(xoTA) + e(x0)) would hold for a 8 > 0. Now let Ds = Int(x G D: e(x) >

8} and $ = {B(x, X(x)) n DHx): x G D \ A} where

X(x) = xmn{d(x, A), e(x)/4}. (12)

If for x G D \ A there exists 8 > 0 such that, for each y G B(x, 8), X(y) > X(x)

then x G DX(X), otherwise a v can be found such that X(y) < X(x) (implies x G

Dx^y)) and x G B(y, X(y)). Hence % is an open cover of D \ A and we can find a
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locally finite open cover {US}S&T which is a star refinement of 'S . If for s E T, xs

£ Us, we choose z for which St(Us, %) c B(z, X(z)) n Z>X(z) and as £

B(xs, d(xs, A) + X(z)) n dA, then for x E Us we have

d(x, as) < d(x, xs) + d(xs, as) < X(z) + d(xs, A) + X(z)

< 2X(z) + d(xs, x) + d(x, A) < 3X(z) + d(x, A)

<d(x,A) + e(x).

Now it is easily seen that for these {Us}sfET and {as}s£T formulas (4) and (5)

give the required retraction of D.

Proposition 4. Any metric space which is locally type I is an ANR (%).

Proof. In the previous considerations we put everywhere "A" in place of "dA".

We see that £>' = U fi>o^>« so obtained is open. If x £ A then there is 5 > 0 for

which x E D ' and hence A c D '.

Corollary. Any metrizable locally type I space is LCS (cf. [5]).

Proposition 5. Let A = A be locally A type I in a metric space (M, d) such that,

for every x £ A, d(x, A) = d(x, dA) and inf{sup{r: S2 is a map for z,y E

coS{B(x, r) n dA] and z E dA}: x £ dA} = a > 0. 77ten A is a retract of

B(A,a/2).

Proof. It is enough to show that B(A, a/2) c D, where D is defined by (11). Let

x £ B(A, a/2). Then 8(x) := a/2 - d(x, A)>0 and

dia{B(x, d(x,A) + 8(x)/2) n A) < 2(d(x, A) + 8(x)/2)

= 2(d(x, A) + a/4 - d(x, A)/2) = d(x, A) + a/2 < a.

Theorem 4. Let A = A be a compact type I subset of a metric space (M, d) and let

f: A —> M be a map. For each x E A and e > 0 let A(f(x), e) =

coS{B(/(x), d(f(x), A) + e) n A}. Then there is an x £ A such that x £

U E>fy4(/(x), e) (this latter set will be denoted by A^x)).

Proof. Suppose that there exists 5 > 0 such that, for all x £ A, x $ A(f(x), 8).

Then we take 8 in place of e'(x) and repeat the construction of r from Proposition

4. The map r ° f: A —» A has a fixed point [1, p. 101] which is impossible as

(r ° f)(x) E A(f(x), 8). Hence there exists a sequence (x„)„eAr such that x„ £

A(f(xn), 8n) with 8n -* 0; we may assume the sequence to converge, say to x. For

any 5 > 0 there exists n0 such that for every n > n0

B(f(x„), d(f(xn), A) + 8„) c B(f(x), d(f(x), A) + 8).

Therefore x„ E A(f(x), 8) for n > n0 and x E A(f(x), 8). So it must be that

x e ^a*y
Theorem 3 and Proposition 5 have locally type I analogs; the assumption that,

for x £ A, d(x, A) = d(x, dA) can be omitted.
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