HOW TO RECOGNIZE A LOCALIZED SPHERE

J. AGUADÉ

ABSTRACT. Two cohomological characterizations of the sphere localized at a prime are given.

The purpose of this note is to obtain necessary and sufficient conditions on the cohomology of a nilpotent space in order to insure that it has the homotopy type of S_p^m , the sphere localized at the prime p (cf. [2]). p will denote a fixed prime integer. $\hat{\mathbf{Z}}_p$, \mathbf{Z}_p , \mathbf{Z}_p , \mathbf{Z}_p denote the p-adic integers, the integers localized at p, the integers modulo p and the p th roots of unity with p running over all integers p0, respectively. Group will always mean abelian group. A group is called p-local if it is p-divisible for every p0 and has no p-torsion for every p1. A nilpotent space is called p-local if its homology groups with integral coefficients are p-local [2, p1. 53].

Recall that a subgroup B of a group A is called p-basic if the following holds:

- (i) B is a direct sum of cyclic p-groups and infinite cyclic groups,
- (ii) A/B is p-divisible,
- (iii) B/p^kB is a direct summand of A/p^kB for all k.

Every group contains p-basic subgroups [1, I, p. 137].

We use freely the most elementary properties of the functors Hom and Ext. A standard reference is [1, Chapters VIII and IX]. In particular we shall use the following:

$$\operatorname{Ext}(\mathbf{Z}_n, A) = A/nA$$
, $\operatorname{Ext}(\mathbf{Z}_{p^{\infty}}, \mathbf{Z}_p) = \mathbf{Z}_p$, $\operatorname{Ext}(\mathbf{Q}, \mathbf{Z}_{(p)}) = \mathbf{Q}^{\aleph_0}$, $\operatorname{Ext}(\mathbf{Z}_{p^{\infty}}, \mathbf{Z}_{(p)}) = \hat{\mathbf{Z}}_p$. All spaces are assumed to be of the homotopy type of CW-complexes.

LEMMA 1. Let B be a p-basic subgroup of A. Then $Hom(A, \mathbb{Z}_p) = Hom(B, \mathbb{Z}_p)$.

PROOF. Since A/B is p-divisible and \mathbb{Z}_p contains no p-divisible subgroups other than 0, the Hom-Ext exact sequence associated to $B \mapsto A \longrightarrow A/B$ yields that $\operatorname{Hom}(A, \mathbb{Z}_p)$ is a subgroup of $\operatorname{Hom}(B, \mathbb{Z}_p)$. Let $f: B \to \mathbb{Z}_p$. Clearly, f factorizes through $f': B/pB \to \mathbb{Z}_p$. Since B is a p-basic subgroup of A, B/pB is a direct summand of A/pB. Hence f' extends to A/pB and yields a homomorphism $g \in \operatorname{Hom}(A, \mathbb{Z}_p)$. \square

LEMMA 2. If A is a p-local group such that $\operatorname{Hom}(A, \mathbf{Q}) = \operatorname{Hom}(A, \mathbf{Z}_p) = 0$, then A is a divisible p-group.

Received by the editors January 18, 1979.

AMS (MOS) subject classifications (1970). Primary 55J20, 20K30, 20K35.

Key words and phrases. Localization, nilpotent spaces, universal coefficient theorem.

J. AGUADÉ

PROOF. Since $\operatorname{Hom}(A, \mathbf{Q}) = 0$, A has no elements of infinite order. Since A is p-local, A is a p-group. Let B be a p-basic subgroup. By Lemma 1, $\operatorname{Hom}(B, \mathbf{Z}_p) = \operatorname{Hom}(A, \mathbf{Z}_p) = 0$ and since B is a direct sum of cyclic p-groups then B = 0. That is A is p-divisible and so, since A is p-local, A is divisible. \square

LEMMA 3. Let E be a nilpotent space such that $H_*(E; \mathbb{Z}) = H_*(S_p^m; \mathbb{Z})$. Then E has the homotopy type of S_p^m .

PROOF. If m > 1 then $H_1E = 0$. In other words, the abelianization of π_1E is trivial. Since π_1E is a nilpotent group we conclude that E is simply connected and so E is a Moore space $M(\mathbf{Z}_{(p)}, m)$, that is a localized sphere S_p^m .

If m = 1 then we have

$$\begin{bmatrix} E, S_p^1 \end{bmatrix} = \begin{bmatrix} E, K(\mathbf{Z}_{(p)}, 1) \end{bmatrix} \cong H^1(E; \mathbf{Z}_{(p)}) = \mathbf{Z}_{(p)}$$

where $K(\mathbf{Z}_{(p)}, 1)$ denotes an Eilenberg-Mac Lane space of type $(\mathbf{Z}_{(p)}, 1)$. Then there exists a map $f: E \to S_p^1$ which induces isomorphisms in homology. Because E and S_p^1 are nilpotent spaces, f must be a homotopy equivalence. The result follows. \square

THEOREM 4. Let E be a nilpotent space such that

- (1) E is p-local,
- (2) $H^*(E; R) = H^*(S^m; R)$ where $R = \mathbb{Z}_p$ or $R = \hat{\mathbb{Z}}_p$,
- (3) $H^*(E; \mathbf{Q}) = H^*(S^m; \mathbf{Q}),$
- (4) $H^{m+1}(E; \mathbf{Z}_{(p)}) = 0.$

Then $E = S_n^m$. If any of the above conditions is omitted then the conclusion is false.

PROOF. It suffices to prove that $H_*(E; \mathbb{Z}) = H_*(S_p^m; \mathbb{Z})$. Let us consider the exact sequence $\hat{\mathbb{Z}}_p \xrightarrow{p} \hat{\mathbb{Z}}_p \longrightarrow \mathbb{Z}_p$. It induces a long exact sequence in cohomology:

$$\ldots \to H'(E; \, \hat{\mathbf{Z}}_p) \xrightarrow{p} H'(E; \, \hat{\mathbf{Z}}_p) \to H'(E; \, \mathbf{Z}_p) \to H'^{+1}(E; \, \hat{\mathbf{Z}}_p) \to \ldots$$

From this it follows easily that we may assume, without loss of generality that $R = \mathbb{Z}_p$ in condition (2). On the other hand, condition (3) implies that H_rE has torsion-free rank zero if $r \neq m$ and has torsion-free rank one if r = m.

The universal coefficient theorem:

$$\operatorname{Ext}(H_{r-1}E, \mathbf{Z}_p) \mapsto H'(E; \mathbf{Z}_p) \longrightarrow \operatorname{Hom}(H_rE, \mathbf{Z}_p)$$

yields: Hom $(H_rE, \mathbf{Z}_p) = 0$ if $r \neq m$ and $\operatorname{Ext}(H_rE, \mathbf{Z}_p) = 0$ if $r \neq m - 1$. It follows from Lemma 2 that H_rE is a divisible *p*-group if $r \neq m$. The structure theorem for divisible groups [1, I, p. 104] shows that $H_rE = \bigoplus \mathbf{Z}_{p^{\infty}}$. But $\operatorname{Ext}(H_rE, \mathbf{Z}_p) = 0$ if $r \neq m - 1$, hence $H_rE = 0$ if $r \neq m$, m - 1 because $\operatorname{Ext}(\mathbf{Z}_{p^{\infty}}, \mathbf{Z}_p) = \mathbf{Z}_p$.

Since $H^m(E; \mathbb{Z}_p) = \mathbb{Z}_p$ the universal coefficient theorem shows that there are two cases:

(A)
$$\operatorname{Ext}(H_{m-1}E, \mathbf{Z}_p) = \mathbf{Z}_p$$
, $\operatorname{Hom}(H_mE, \mathbf{Z}_p) = 0$.

 $H_{m-1}E$ is a divisible p-group and so $H_{m-1}E = \bigoplus \mathbb{Z}_{p^{\infty}}$. Since $\operatorname{Ext}(H_{m-1}E, \mathbb{Z}_p) = \mathbb{Z}_p$ it follows that $H_{m-1}E = \mathbb{Z}_{p^{\infty}}$. On the other hand, let B be a p-basic subgroup of H_mE . By Lemma 1, $\operatorname{Hom}(B, \mathbb{Z}_p) = \operatorname{Hom}(H_mE, \mathbb{Z}_p) = 0$ and so B = 0 and H_mE is divisible because it is p-local and p-divisible. Since H_mE has torsion-free rank one and $\operatorname{Ext}(H_mE, \mathbb{Z}_p) = 0$ we conclude that $H_mE = \mathbb{Q}$. Hence, we see that in this case

the space E has the homology of $M(\mathbf{Q}, m) \vee M(\mathbf{Z}_{p^{\infty}}, m-1)$, the wedge of the Moore spaces $M(\mathbf{Q}, m)$ and $M(\mathbf{Z}_{p^{\infty}}, m-1)$.

(B) $\operatorname{Ext}(H_{m-1}E, \mathbb{Z}_p) = 0$, $\operatorname{Hom}(H_mE, \mathbb{Z}_p) = \mathbb{Z}_p$.

 $H_{m-1}E$ is a divisible p-group such that $\operatorname{Ext}(H_{m-1}E, \mathbb{Z}_p) = 0$. Since $\operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \mathbb{Z}_p)$ $= \mathbb{Z}_p$ then $H_{m-1}E = 0$ and so E has homology $\neq 0$ only in dimension m. Let B be a p-basic subgroup of $H_m E$. We have $\text{Hom}(B, \mathbf{Z}_p) = \text{Hom}(H_m E, \mathbf{Z}_p) = \mathbf{Z}_p$. Since B is a direct sum of infinite cyclic groups and cyclic p-groups, either $B = \mathbb{Z}$ or $B = \mathbb{Z}_{p^k}$. If $B = \mathbb{Z}_{p^k}$ then condition (iii) in the definition of p-basic subgroup yields that \mathbf{Z}_{p^k} is a direct summand of $H_m E$, but this is impossible because $\operatorname{Ext}(H_m E, \mathbf{Z}_p)$ = 0. Hence **Z** is a p-basic subgroup of $H_m E$. Since $D = H_m E/\mathbf{Z}$ is divisible and $\operatorname{Ext}(H_m E, \mathbb{Z}_p) = 0$, the Hom-Ext exact sequence associated to $\mathbb{Z} \mapsto H_m E \to D$ gives $Ext(D, \mathbf{Z}_p) = 0$. If we apply now the structure theorem for divisible groups we obtain that D has no p-torsion and so H_mE is torsion-free because it is p-local and so it can only have p-torsion. Then H_mE is a p-local torsion-free group of rank one. We apply now the classification theorem for these groups [1, II, p. 110]. Since $H_m E$ is p-local, in order to prove that $H_m E = \mathbf{Z}_{(p)}$ it suffices to show that $H_m E$ contains elements of p-height zero. Let us consider $1 \in \mathbb{Z} \subset H_m E$. If 1 = pa, $a \in H_m E$ then in D we have $0 = p\bar{a}$ and since D has no p-torsion we get $a \in \mathbb{Z}$, a contradiction. Hence, the type of $H_m E$ is $t_q = \infty$ if $q \neq p$ and $t_p = 0$. Then the space E has the same integral homology as S_p^m and then, by Lemma 3, $E = S_p^m$.

We have proved that if a nilpotent space E satisfies conditions (1), (2), (3) of the theorem then either $E = S_p^m$ or E has the same homology as $M(\mathbb{Q}, m) \vee M(\mathbb{Z}_{p^{\infty}}, m-1)$. It suffices to show that if $H_m E = \mathbb{Q}$ then E does not satisfy condition (4). This follows easily from the fact $\text{Ext}(\mathbb{Q}, \mathbb{Z}_{(p)}) = \mathbb{Q}^{\aleph_0}$.

Finally, note that none of the conditions (1), (2), (3), (4) can be omitted. Let us consider the spaces $E_1 = S_p^m \vee M(\mathbf{Z}_q, 2)$ (q a prime $\neq p$); $E_2 = S_p^m \vee M(\mathbf{Z}_p, 2m)$; $E_3 = M(\mathbf{Z}_{p^{\infty}}, m-1)$; $E_4 = M(\mathbf{Q}, m) \vee M(\mathbf{Z}_{p^{\infty}}, m-1)$. It is easily seen that the space E_i verifies conditions (1), (2), (3), (4) except the *i*th, but $E_i \neq S_p^m$. \square

The above theorem shows that the cohomology with coefficients $\hat{\mathbf{Z}}_p$, \mathbf{Z}_p , \mathbf{Q} is not enough to characterize the localized spheres. The following theorem shows that the cohomology with coefficients $\mathbf{Z}_{(p)}$ is suitable for this purpose.

THEOREM 5. Let E be a p-local nilpotent space such that $H^*(E; \mathbf{Z}_{(p)}) = H^*(S^m; \mathbf{Z}_{(p)})$. Then $E = S_p^m$.

PROOF. From the universal coefficient theorem we obtain $\operatorname{Hom}(H_r E, \mathbf{Z}_{(p)}) = 0$ if $r \neq m$ and $\operatorname{Ext}(H_r E, \mathbf{Z}_{(p)}) = 0$ if $r \neq m - 1$. Further, $\operatorname{Ext}(H_{m-1} E, \mathbf{Z}_{(p)})$ is a p-local subgroup of $\mathbf{Z}_{(p)}$. Then either $\operatorname{Ext}(H_{m-1} E, \mathbf{Z}_{(p)}) = \mathbf{Z}_{(p)}$ or $\operatorname{Ext}(H_{m-1} E, \mathbf{Z}_{(p)}) = 0$. But in the first case $\mathbf{Z}_{(p)}$ will be a cotorsion group (cf. [1, I, p. 232] and Theorem 54.6 of [1, I, p. 235]) and this is impossible because $\operatorname{Ext}(\mathbf{Q}, \mathbf{Z}_{(p)}) = \mathbf{Q}^{\mathbf{R}_0} \neq 0$. Hence, $\operatorname{Ext}(H_r E, \mathbf{Z}_{(p)}) = 0$ for all r.

Let B_r be a p-basic subgroup of H_rE . If B_r contains a direct summand of the form \mathbb{Z}_{p^k} then it follows easily from the definition of p-basic subgroup that \mathbb{Z}_{p^k} is a direct summand of H_rE . But $\operatorname{Ext}(\mathbb{Z}_{p^k}, \mathbb{Z}_{(p)}) = \mathbb{Z}_{(p)}/p^k\mathbb{Z}_{(p)} \neq 0$. Hence, B_r is free. Let us consider the Hom-Ext exact sequence associated to $\mathbb{Z}_{(p)} \mapsto \mathbb{Z}_{(p)} \to \mathbb{Z}_{(p)} \to \mathbb{Z}_{(p)}$.

J. AGUADÉ

$$0 \to \operatorname{Hom}(H_r E, \mathbf{Z}_{(p)}) \stackrel{p}{\to} \operatorname{Hom}(H_r E, \mathbf{Z}_{(p)}) \to \operatorname{Hom}(H_r E, \mathbf{Z}_p) \to 0.$$

We get that $\operatorname{Hom}(H_rE, \mathbf{Z}_p) = 0$ if $r \neq m$. By Lemma 1, $\operatorname{Hom}(B_r, \mathbf{Z}_p) = \operatorname{Hom}(H_rE, \mathbf{Z}_p) = 0$, hence $B_r = 0$ if $r \neq m$. This shows that H_rE is a divisible group for $r \neq m$. But the structure theorem for divisible groups and the equalities $\operatorname{Ext}(\mathbf{Q}, \mathbf{Z}_{(p)}) = \mathbf{Q}^{\aleph_0}$, $\operatorname{Ext}(\mathbf{Z}_{p^\infty}, \mathbf{Z}_{(p)}) = \hat{\mathbf{Z}}_p$, $\operatorname{Ext}(H_rE, \mathbf{Z}_{(p)}) = 0$ yield $H_rE = 0$ if $r \neq m$.

In the case r=m the above exact sequence shows that $\operatorname{Hom}(H_m E, \mathbf{Z}_p) = \mathbf{Z}_p$. By Lemma 1, $B_m = \mathbf{Z}$. The Hom-Ext exact sequence associated to $\mathbf{Z} \mapsto H_m E \to H_m E/\mathbf{Z}$ shows that $\operatorname{Ext}(H_m E/\mathbf{Z}, \mathbf{Z}_{(p)})$ is the image of the countable group $\operatorname{Hom}(\mathbf{Z}, \mathbf{Z}_{(p)})$. Since $\operatorname{Ext}(\mathbf{Q}, \mathbf{Z}_{(p)})$ and $\operatorname{Ext}(\mathbf{Z}_{p^{\infty}}, \mathbf{Z}_{(p)})$ are both uncountable and since $H_m E/\mathbf{Z}$ is a divisible group, we get that $H_m E/\mathbf{Z}$ is a torsion group without p-torsion. This leads to $\operatorname{Hom}(H_m E/\mathbf{Z}, \mathbf{Q}) = 0$ and so $\operatorname{Hom}(H_m E, \mathbf{Q}) = \operatorname{Hom}(\mathbf{Z}, \mathbf{Q}) = \mathbf{Q}$. Hence $H_m E$ is a group of torsion-free rank one. Further, $H_m E$ is torsion-free because $H_m E/\mathbf{Z}$ has no p-torsion and $H_m E$ is p-local. Now we can show, as in the proof of Theorem 4 that $H_m E = \mathbf{Z}_{(p)}$ and so the space E has the same integral homology as S_p^m . Then, by Lemma 3, E is a localized sphere S_p^m . \square

REFERENCES

- 1. L. Fuchs, Infinite abelian groups, Academic Press, New York, 1970.
- 2. P. Hilton, G. Mislin, and J. Roitberg, Localization of nilpotent groups and spaces, North-Holland Mathematics Studies 15, North-Holland, Amsterdam, 1975.

SECCIÓ DE MATEMÀTIQUES, UNIVERSITAT AUTÒNOMA DE BARCELONA, BELLATERRA (BARCELONA), SPAIN

Current address: Forschungs Institut für Mathematik, ETH-Zentrum, 8092-Zürich, Switzerland