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AN EXAMPLE CONCERNING INVERSE LIMIT SEQUENCES

OF NORMAL SPACES

M. G. CHARALAMBOUS

Abstract. Using techniques developed by Wage and Przymusinski, we construct

an inverse limit sequence (Xn, /J with limit space X such that each Xn is Lindolöf

with dim Xn ■» 0, where dim denotes covering dimension, while X is normal with

dim X > 0. The space X is a counterexample to several conjectures in Topology.

Let X be the inverse limit of the sequence (Xn, /„,). We recall that if, for some ¿

in N, the set of positive integers, dim Xn < k for each « in TV, then dim X < k if

one of the following conditions is satisfied: (a) Xn is perfectly normal for each n in

N, (b) X is strongly paracompact, and (c) X is countably paracompact, Xn is

normal and/,,, is open and surjective for all «, m in TV [1], [4].

The Construction. Let d be the usual metric on the unit interval I. Let p be the

separable metric on I introduced by Wage [8]. The p-topology on I is finer than the

¿-topology, d < p and every p-Borel set of 7 is also ¿/-Borel. Moreover, every

nonempty p-open set is uncountable and there is an p-closed set E such that the

boundary of every nonempty p-open set disjoint from E has cardinality c, the

cardinality of the continuum.

Let {Ax, A2, ■ ■ ■ } be a partition of I with the property that for every uncount-

able Borel set of B of I and every « in TV, |Ti n An\ = c [6, Theorem 2]. We may

clearly assume that 0, 1 are in A, and that A x n E is p-dense in E. For each x in

I — Ax and each « in TV, choose x~, x„+ in A2 so that

1 -        - + 1
X-- <xn   < xn+x < x < xn+x < X„   < X + - .

n n

Let {(Aa, Ba): a < u(c)} be the collection of all pairs of countable subsets of A2

with \A9 n Ti£ n A| uncountable, where w(c) is the first ordinal of cardinality c

and A is the diagonal of I2. For each a < w(c) and each « in A/, choose xa in Ax,

(XL XL) m Aa and (x3m, x^,) in Tia so that p(jc¿,, xa) < l/n, x'm < xa and xß < xa

for ß < a and i = 1, 2, 3, 4, where <\ is a well-ordering on I.

For n, m in N and x in I, we define a set Ti^(x) containing x as follows. For x in

A2 u • • • IM„+1 U 04, - {*„: a < u(c)}), B£(x) = {x}. For x in U"_n+2^t,

B„(x) = [jc~, jCj^j. On {xa: a < 03(c)}, B£ is defined by transfinite induction.

Assuming it has been defined for all ß < a, we set

B¿ixa) = {xa}u iBZ+^ix^y.k > 2m, i = 1, 2, 3, 4).
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It is readily seen that B£(x) is a ¿/-closed subset of [x - \/m, x + \/m] and

B£(xa) is a countable subset of (x: x < xa, o(x, xa) < l/m}. Also B£+X(x) c

B^(x) and if y is in B¿(x), then B£(y) c B¿(x) for some A: in AT. It follows that

{B£(x): m E N} is a local base at x consisting of open-and-closed sets relative to

some topology t„ on /. Next, put Bm(x) = B£(x) if x = xa for some a < w(c), and

Bm(x) = {x} if not. Bm(x) is a local base of x consisting of open-and-closed sets

relative to some topology t on /. Clearly, t is finer than the p-topology on /, and

{x¿,: n = 1, 2,. . . } converges to xa, i = 1, 2, 3, 4.

In the sequel, X, Xn denote (/, t), (/, t„), respectively, and/^,: Xm -» A^ denotes

the identity function. It is readily verified that X is the limit space of the inverse

limit sequence (X„,fnm).

Claim 1. Xn is a T2 Lindelöf space with dim Xn = 0.

Proof. It is obvious that Xn is T2 and Lud Xn = 0. Let % be an open cover of Xn.

Since clearly every point of An+2 has a local base consisting of open intervals, there

are ¿-open sets G„ G2, . . ., each contained in some member of %, such that

An+2 c G = U," i&y Then, since (X - G) n ^n+2 = 0, * - G is countable. It

is now clear that % has a countable open refinement, and hence Xn is Lindelöf.

Thus, since also ind X„ = 0, dim X„ = 0.

Claim 2. The family of neighbourhoods of the diagonal of X2 is a uniformity. Hence

X is normal [2, Problem L,p. 209].

Proof. Let G be an open neighbourhood of A. It suffices to find a neighbour-

hood F of A with V ° V c G.
Let A = A2 — G. Ifj4pnA were uncountable, then, for some a < «(c), A

would contain Aa = Ba as a countable p-dense subset and hence (xa, xa) would be

a point of A. Thus, A" n A is countable. Since p is separable and A'2 is Tychonoff,

there is a cozero cover {G„ G2, . . . } of the open-and-closed subset Ax oi X such

that

00

A n A2 c U   G,2 C G.
/-i

Let {//,, //2, . . . } be a cozero star-refinement of {Gx, G2, . .. } and put V =

U °L i//,2 U A. It is readily verfied that K has the required properties.

Claim 3. dim X > 0.

Proof. Let F be an uncountable p-closed set of / with E n F = 0, and suppose

U, V are disjoint open-and-closed sets of Ax with E r\ Ax c U, F n Ax c F and

il, = y U r7. Then F is uncountable and V n Fp is countable, otherwise, for

some a < u(c), Aa, Ba would be countable p-dense subsets of U2, V2, respectively,

and hence xa would be in U n V. Also Up u V = Ap = X and, since /4, n £ is

p-dense in E, E c ¿7". Hence X - Up = V - If is an uncountable p-open set of

/ contained in X - E with p-boundary contained in the countable set Up n V".

We conclude that dim A, > 0 and hence dim X > 0.

Remark 1. A space is called Af-compact if it is the inverse limit of countable

discrete spaces. A zero-dimensional T2 Lindelöf space is N-compact, and so is the

inverse limit of A^-compact spaces. Hence X is N-compact although dim X > 0.
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Przymusiúski's space in [7] has the same property. Spaces exhibiting the same

pathology were previously constructed in [3] and [5].

Remark 2. Kelley [2, p. 209] has conjectured that a topologically complete space

with the property that the family of all neighbourhoods of its diagonal is a

uniformity is paracompact. A1 is a counterexample to this conjecture. For if X were

paracompact, since it is also locally countable, we would have dim X = loc dim X

= 0.
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