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CONTINUOUS MAPS OF THE INTERVAL WHOSE

PERIODIC POINTS FORM A CLOSED SET

ETHAN M. COVEN AND G. A. HEDLUND

Dedicated to the memory of Ruf us Bowen

Abstract. We show that for a continuous map of a closed interval to itself, if the

set of periodic points is closed, then every recurrent point is periodic. If, further-

more, the set of least periods of the periodic points is finite, then every nonwander-

ing point is periodic. This answers a question of L. Block [Proc. Amer. Math. Soc.

67 (1977), 357-360].

Introduction. In [1] and [2], L. Block studied continuous maps of a closed interval

to itself with finitely many periodic points. He showed [1, Theorem B] that if, in

addition, every periodic point is fixed, then every nonwandering point is periodic,

and [2, Theorem A] that the same conclusion holds if the set of nonwandering

points is finite. In [1] he raised the question of whether this conclusion follows just

from the assumption that the set of periodic points is finite.

The main result of this paper is the following, which answers Block's question in

the affirmative.

Theorem 4. For a continuous map of a closed interval to itself, if the set of least

periods of the periodic points is finite, then every nonwandering point is periodic.

In the course of deriving this result, we show (Theorem 3) that Block's result of

[1] is true without the assumption that there are only finitely many periodic points.

We also show (Theorem 1) that if the set of periodic points is closed, then every

recurrent point is periodic, and (Corollary to Theorem 2) that if the set of least

periods of the periodic points is finite, then every orbit is asymptotic to a periodic

orbit.

Notation and terminology. Throughout this paper, /: [a, b] -* [a, b] will be con-

tinuous.

A point x E [a, b] is fixed provided that fix) = x; x is periodic provided that

there exists « > 1 such that f"(x) = x (any such n is called a period of x); x is

recurrent provided that for every neighborhood U of x, there exists « > 1 such that

f(x) E U; x is nonwandering provided that for every neighborhood U of x, there

exists « > 1 such that f"(U) n U ¥= 0. Let F(f), P(f), R(f) and NW(f) denote

the sets of fixed, periodic, recurrent and nonwandering points, respectively. Each of
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these sets is invariant, i.e., / maps each set to itself. Furthermore, 0 ¥= F(f) C P(f)

Ç R(f) ç NW(f), F(f) and NW(f) are closed, and for each n > 1, P(f) = P(fn)

and [3] R(f) = R(f).
Let NP(f), NR(f) and W(f) denote the sets of nonperiodic, nonrecurrent and

wandering (i.e., not nonwandering) points, respectively.

Let C C [a, b]. We say that/ is completely positive on C provided th&tf(x) > x

for all x G C and all n > 1 ; / is completely negative on C provided that f(x) < x

for all x G C and all n > 1.

Let I,JC [a, b\. We write I <J provided that x < y for all x G / and all

yEJ.
By a basic neighborhood of x G (a, b) we mean an open interval / such that

x E I C(a, b). A basic neighborhood of a is an interval of the form [a, c) where

c < b and a basic neighborhood of b is an interval of the form (d, b] where d > a.

Results. If P(f) is closed, then the components of NP(f) are of the form (/?, a),

[a, q) or (/?, ¿?] where/?, q G P(/). Note that P(f) is closed if P(/) = F(f), or more

generally, if the set of least periods of the periodic points is finite.

Lemma 1. IfC is a component of NP(f), then for each n > 1, either f(x) > x for

allx E C orf(x) < x for all x E C.

In particular, if a E C, then f is completely positive on C and if b E C, then f is

completely negative on C.

Proof. It suffices to consider the case where C is an interval. Let n > 1 and

suppose that there exist x, y G C such that/"(x) > x and f(y) <y. Then there

exists z E C such that/"(z) = z and hence P(f) n C ¥= 0.

If a G C, then a G NP(f) and f"(a) > a for all n > 1. Hence / is completely

positive on C. Similarly, if b E C, then / is completely negative on C.   □

Lemma 2. If C = (/?, a) is a component of NP(f) and p and q are fixed, then f is

either completely positive on C or completely negative on C.

Proof. By Lemma 1, either fix) > x for all x E C or fix) < x for all x G C. We

assume the former.

Let n > 1. Since C is a component of NP(f) = NP(f"), it follows from Lemma

1 that either/"(x) > x for all x E C or/"(x) < x for all x G C. But/'(/?) = /? for

all i > 1, so if x G C is sufficiently close to /?, then x </(x) < • • • </"(x).

Therefore/"(x) > x for all x E C. Since n was arbitrary,/is completely positive on

C.

Similarly, if fix) < x for all x G C, then/is completely negative on C.   □

An immediate consequence of Lemmas 1 and 2 is the following.

Lemma 3. If P(f) = F(f) and C is a component of NP(f), then f is either

completely positive on C or completely negative on C.   □

Theorem 1. Iff: [a, b]—>[a, b] is continuous and P(f) is closed, then R(f) =

P(/)-
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Proof. It suffices to show that NP(f) Ç NR(f). Let x E NP(f) and let C be the

component of NP(f) containing x. Since P(f) is closed, C is a neighborhood of x.

Suppose that a E C. We may assume that fK(x) E C for some K > 1, for

otherwise there is nothing to prove. By Lemma 1, / and hence fK is completely

positive on C. Thus for every « > 2, fnK(x) = f"~X)K(fK(x)) >fK(x), so letting

/ = [a,fK(x)), we have fnK(x) g / for all « > 1. Thus x E NR(fK). By [3],

NR(fK) = NR(f) and so x E NR(f). Similarly, if b E C, then x E NR(f).

If C = (p, q) where p, q E C, let M be a common period of p and q. Then

p, q E F(fM) and hence by Lemma 2, fM is either completely positive on C or

completely negative on C. In either case an argument similar to the one in the

preceding paragraph shows that x E NR(f).   fj

Theorem 2. If f: [a, b] -+ [a, b] is continuous and P(f) = F(f), then for every

x £ [a, b], there exists p E F(f) such that f(x) —>p.

Proof. If f(x)^p, thenp E F(f), for fn+\x)^f(p) and/"+1(x)->p. There-

fore it suffices to show that {f(x)} converges for every x E [a, b].

If f(x) E P(f) for some « > 0, the result is trivial. Suppose that/"(x) E NP(f)

for all n > 0. Let C„ be the component of NP(f) containing/"(x). Let £„ = + 1 if/

is completely positive on C„ and let £, = -1 if/is completely negative on Cn.

If there exists A > 0 such that i, = + 1 for all « > N, then fN(x) <fN+l(x)

< . . . and so {/"(x)} converges. Similarly, if £„ = -1 for all n > A, then {/"(x)}

converges.

Suppose that both +1 and -1 appear infinitely often in the sequence

{¿0, £„ . . . }. Let 9 ={n> 0||„ = + 1} = {p, <p2 < . . . } and 9H = {« > 0|

£„ = -1} = {mx < m2 < . . . }. Then {f'(x)} is increasing and {/"Kx)} is decreas-

ing and hence there exist p, q E [a, b] such thatfp'(x) -*p and/"Xx) -» q. There is

a subsequence {ac,} of the positive integers such that Ac, E 1? and Ac, 4- 1 E 911.

Then fk'+x(x)^f(p) and /**+1(x) -> q, and hence fip) = q. Similarly, fiq) = p.

Therefore p E P(f) = F(f) and hence p = q.   □

Corollary. If f: [a, b] —* [a, b] is continuous and the set of least periods of the

periodic points is finite, then for every x E [a, b], there exists p E P(f) such that

\fn(x)-f(p)\^0.

Proof. Apply Theorem 2 to fN where A is a common period of the periodic

points.   □

Lemma 4. Let P(f) be closed and let C and D be components of NP(f) such that f

is completely positive on both C and D. If for some « > 1, x E C and f(x) E D,

then x E W(f).

A similar statement holds if / is completely negative on both C and D.

Proof. Since x E NP(f), x ^/"(x). Since C and D are intervals, there are

disjoint basic neighborhoods / of x and J of f"(x) such that I Q C, J Q D and

/"(/) C J. Since/is completely positive on C, / < J.
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To show that x G W(f), it suffices to show that/"+'(/) n / = 0 f or all /' > 1.

Let y E I and i > I. Then f(y) E J Q D. Since / is completely positive on D,

fn+i(y) > f"(y) and since / < J, fn+i(y) € I.   U

Theorem 3. ///: [a, b] -+[a, b] is continuous and P(f) - F(f), then NW(f) =

p(f)-

Proof. It suffices to show that NP(f) C W(f). Let x E NP(f).

Suppose that f(x) E NP(f) for all n > 0. Let C„ be the component of NP(f)

containing/"(x). By Lemma 3, there exist i >j > 0 such that/is either completely

positive on both C, and Cj or completely negative on both C, and C,. Since

f>(x) E Cj znàf-j(fJ(x)) G C„f(x) E W(f) by Lemma 4 and hence x G W(f).

Suppose that f"(x) G P(f) for some m > 1 and that x G NW(f). We may

assume that y = fm~\x) E NP(f). Then y G NW(f) n NP(f) and f(y) G P(f).
Let C be the component of NP(f) containing y. By Lemma 3,/is either completely

positive on C or completely negative on C. We assume the former.

There exist basic neighborhoods I of y and J and J' of fiy) such that I C C,

I r\J = 0, f(I)CJ' QJ and /(/') Q J. Then I <J. Since y G NW(f), there

exist z G / and k > 3 such that/*(z) G /. We may assume that/*_l(z) G /• Since

z,/*(z) G /, it follows that/(z),/*+1(z) G J'.

We show that

fk+x(z)<fk-x(z)<f(z). (*)

This will prove the theorem, for then/*_1(z) G J' and hence/*(z) = f(fk~x(z)) E

J, which is impossible since fk(z) E I and / n J = 0.

To prove (*), note that/*-'(z) > z G / and since fk~x(z) G /, fk~\z) >fk(z).

Then /*_1(z) G NP(f), for otherwise /*_1(z) G F(f) and hence /*~'(z) = fk(z).

Let Z> be the component of NP(f) containing fk~\z). Since f(fk~x(z)) = /*(z) <

fk~x(z), it follows from Lemma 3 that / is completely negative on D and in

particular,/* +'(z) =/2(/*-'(z)) <fk~\z).

As in the preceding paragraph, fiz) G NP(f). Let E be the component of NP(f)

containing fiz). Since fk(z) G /, /(z) G J and / < 7, it follows that fk~\f(z)) =

/*(z) </(z). Hence by Lemma 3,/is completely negative on E and thus/*~'(z) =

fk~2(f(z)) <f(z). This proves (*) and hence the theorem.

The proof when/ is completely negative on C is similar.   □

It follows from a theorem of Sarkovskiï [4] (for an account in English, see [5])

that if the set of least periods of the periodic points is finite, then each such least

period is a power of 2. (For a short proof of this consequence of SarkovskiFs

Theorem, see [2, Theorem B].)

Lemma 5. Let N be the maximal least period of the periodic points, let 0 < i <

N — 1 and let C be a component of NP(f). Then one of the following statements is

true.

(l)fN+i(x) > xfor allxEC and all n > 0(n > I if i = 0).

(2) fN+i(x) < x for all x E C and all n > 0 (n > I if i = 0).
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Proof. If a E C or b E C, then the lemma is true by Lemma 1. Suppose that

C = (p, q) where p, q E P(f). By SarkovskiFs Theorem, A = 2" for some v > 0.

We prove the lemma by induction on v. The lemma is true for v = 0 by Lemma 2.

Suppose it is true for v; we prove it for v + 1.

Let 2"+x = 2 A be the maximal least period of the periodic points and let g = f2.

Then P(g) = P(f) and the maximal least period (under g) of the periodic points is

A. By the inductive hypothesis, if 0 < i < A — 1, then one of the following

statements is true.

(1') gnJV+,(x) > x for all x E C and all « > 0 (« > 1 if i = 0).

(2') gnN+i(x) < x for all x E C and all « > 0 (« > 1 if i = 0).

Hence if / is even and 0 < / < 2 A — 1, then one of the following statements is

true.

(l")f2nN+i(x) > x for all x E C and all « > 0 (« > 1 if i = 0).

(2")f2nN+i(x) < x for all x E C and all n > 0 (« > 1 if i = 0).

To complete the proof, it suffices to show that if /' is odd and 0 < / < 2A — 1, then

either (1") or (2") is true.

Suppose that f'(p) = p and f'(q) = q. Then /' is a multiple of the least period of

p, which is a power of 2; hence i = 1. Therefore p and q are fixed points and hence

by Lemma 2, / is either completely positive on C or completely negative on C. Thus

either (1") or (2") is true.

Suppose that/'(p) >p and let « > 0. Since f2nN+i(p) = f'(p),f2nN+i(p) >p. If

x E C is sufficiently close to p, then /2,,JV+'(x) > x. Hence by Lemma 1, (1") is

true. Similarly, iîf'(p) <p, then (2") is true. The proofs when f'(q) ^ q are similar.

D

Lemma 6. Let N be the maximal least period of the periodic points and let

C = (p, q) be a component of NP(f). Let i > 0 and suppose thatfN+i(x) > xfor all

x E C and all « > 0 (« > 1 if i = 0). // there exist y E C, m > 0 andj, k > 1 such

thatf"N+J(y) E Candk=i-j (mod N), then fnN+k(x)> xfor all x E C and all

« > 0.

A similar statement is true if fN+'(x) < x for all x E C and all « > 0 (n > 1 if

i = 0).

Proof. If the conclusion is false, it follows from Lemma 5 thatfN+k(x) < x for

all x E C and all « > 0. Let z = /mAr+^( v). By Theorem 2 applied to fN,fnN(z) -+ r

G P(/") = P(f). Hence fnN+k(z)^fk(r) E P(f). Since fnN+k(z) < z for all « > 0

andp is the largest periodic point less than z, we have/*(»-) < p.

Since Ac + / = / (mod A), k + j = i + hN for some integer «. Then/n/v+*(z) =

fnN+k(fmN+j(y)) = /C"+"+^+'(>,) > y if w + « + « > 1. It follows that/*(/•) >.y

>p. This contradiction proves the lemma.   □

Lemma 7. Let the set of least periods of the periodic points be finite and let C be a

component of NP(f). If NW(f) n W(f2) n C ^ 0, then f is either completely

positive on C or completely negative on C.
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Proof. If a E C or b E C, then the lemma is true by Lemma 1. Suppose

C = (/?, q) where /?, q E P(f). Let N be the maximal least period of the periodic

points. Then the lemma is true if N = 1 by Lemma 2, so we assume that N > 2.

Let x G NW(f) n W(f2) n C. Since x G W(f2), there is a basic neighborhood

/ of x such that I Q C zndf2J(I) n / = 0 for all/ > 1. Since x G AW(/), there

exist y E I and /c > 1 such that /*( y) G /. Then Ac must be odd and we write

k = mN + / where m > 0 and/ > 1 is odd.

Since F(fN) = P(/") = P(f), it follows from Lemma 2 applied to/" that/" is

either completely positive on C or completely negative on C. We assume the

former.

For 0 < i < N — 1, define k¡ by k0 = 0, rc,+1 = k¡ — j (mod Af) and 0 < k¡ <

A/ - 1. In particular, kx = k0 - j (mod TV) and since fnN+k«(z) = /""(z) > z for all

z E C and all n > 1, it follows from Lemma 6 that/"""^'^) > z for all z G C and

all n > 0. By repeated applications of this argument, fN+k<(z) > z for all z G C,

all n > 0 (n > 1 if A:, = 0) and all /', 0 < / < AT — 1. But since A' is a power of 2

and/ is odd, {£,|0 < / < N — 1} is a complete set of residues modulo N. Hence/is

completely positive on C

Similarly, if/" is completely negative on C, then so is/.   □

Lemma 8. Let the set of least periods of the periodic points be finite and let C be a

component of NP(f) such that f is either completely positive on C or completely

negative on C. Ifx E C and fix) E P(f), then x E W(f).

Proof. Let N be the maximal least period of the periodic points. As in the proof

of Theorem 3, the lemma is true if N = 1, so we assume that N > 2.

Suppose that / is completely positive on C, x G C, fix) E P(f) and x G NW(f).

Then x < fN(x) G P(f) = P(fN). There are basic neighborhoods / of x and / and

/' of fN(x) such that / Q C, I <J (and in particular, I n J = 0),fN(I) QJ'QJ

and /"(/') £ /. Furthermore, we may assume that

/'(/) n / = 0   for 1 < i < 2N, (i)

/""(/) n 1 = 0   for all n > 1. (2)

Condition (1) can be satisfied because/'(x) ¥= x for all i > 1 and condition (2) can

be satisfied because, by Theorem 3, x G W(fN).

Since x G NW(f), there exist y G / and k > 1 such that fk(y) E I. We may

assume that k is the least such integer. It follows from (1) that k > 2N and hence

we  can  write  k = mN +/  where  m > 2 and  by  (2),   1 < j < N — 1.  Since

y,fmN+j(y) E I, it follows thatfN(y),fm+X)N+J(y) G /'.

We show that

ftm+l)N+j^y) <f<m-»N+j{y) <fN{y) W

This will prove the lemma, for then fim-lW+J(j,) g J' and hence /m"+7(^) =

fN(fm-X)N+J(y)) E J, which is impossible since fmN+j(y) E I and / n / = 0.

To prove (*), note that fN(y) G NP(f), for otherwise fnN+J(y) E P(f) and

hence P(f) n C =£ 0. Let D be the component of NP(f) containing fN(y). Since

/ < J,f(m~l)N+J(fN(y)) = fmN+J(y) <fN(y), and it follows from Lemma 5 applied
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to D that

fnN+J(fN(y)) <fN(y)   for all «>0. (3)

Since / is completely positive on C and y E C, f^m~x^N+J(y) >y. Since 1 <

(m - 1)A + / < k - 1,  fm-»N+J(y) g /   and   hence,   since  f^+^y) E /,

fm-VN+J(y) > fmN+J(y).    Then   fN(f(m~X)N+j(y)) = /mAr+7(>0 <fm~m+J(y),

jim-m+j^ g p(fN^ and it foilows from Lemma 3 applied tofN that

jnN^m-l)N+Jiy^ <f(m-l)N+j(^      forall„>1. (4)

Setting « = 2 in (4) and « = «t — 2 in (3), we get (*) and hence the lemma.

The proof when / is completely negative on C is similar.   □

Theorem 4. // /: [a, b] -» [a, b] is continuous and the set of least periods of the

periodic points is finite, then NW(f) = P(f).

Proof. It suffices to show that NP(f) n NW(f) = 0.

By SarkovskiFs Theorem, the maximal least period of the periodic points is 2" for

some v > 0. We prove the theorem by induction on v. The theorem is true for

v = 0 by Theorem 3. Suppose it is true for v; we prove it for v + 1.

Let 2"+ ' be the maximal least period of the periodic points and let g = f2. Then

P(g) = P(f) and the maximal least period (under g) of the periodic points is 2". By

the inductive hypothesis, NW(g) = P(g) and hence NP(f) = NP(g) = W(g) =

W(f2). We show that the assumption NP(f) n NW(f) =£ 0 leads to a contradic-

tion. Suppose that x E NP(f) n NW(f). Then/"(x) E NW(f) for all n > 0.

Suppose that f"(x) E NP(f) for all « > 0. Let C„ be the component of NP(f)

containing/"(x). Thus for all « > 0,/"(x) E NW(f) n W(f2) n C„. By Lemma 7,

there exist / >/ > 0 such that/ is either completely positive on both C, and Cj or

completely negative on both C, and Cr Then by Lemma 4, /(x) £ JT(/) and hence

x E W(/).

Suppose that f"(x) E P(f) for some m > 1. We may assume that /m-1(x) E

NP(f). Let C be the component of NP(f) containing f"~x(x). Since f"~x(x) £

AIP(/) n W(f2) n C and/(/m-'(x)) = fm(x) E P(f), it follows from Lemmas 7

and8 that/m"1(x)E W(f).

In either case we have a contradiction and hence NP(f) n NW(f) = 0.   □
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