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ON UNIONS OF ^-EMBEDDED SETS

HLDENORI TANAKA

Abstract. Let A be a realcompact and C-embedded subspace of a space X and let

B be a c-embedded subspace of a space X. Then A u B is c-embedded in X.

1. Introduction. All spaces considered in this paper are assumed to be completely

regular Hausdorff. For a space X, vX denotes the Hewitt realcompactification of X.

A subset S of X is said to be C- (resp. C*-) embedded in X if every real-valued

continuous (resp. bounded continuous) function on S can be extended to a

real-valued continuous function over X, and S is z-embedded in X if for each

zero-set Z of S, there exists a zero-set Z' of X such that Z — Z' r\ S. Clearly,

every C-embedded subset is C*-embedded, and every C*-embedded subset is

z-embedded. In [1], R. L. Blair introduced the concept of »»-embedding as a

generalization of z-embedding as follows. S is »»-embedded in X if the extension t:

vS -» vX of the inclusion map /: S -► X is a homeomorphism of vS into vX.

Clearly, every realcompact subspace of X is »»-embedded in X. We denote that S is

»»-embedded in X by vS c vX. In [1], R. L. Blair proved the following results.

(A) Assume that X is locally compact and that S = ( U ?_ i A,) U B, where 5 is

GVclosed and »»-embedded in X (so that vB c »'A') and each A¡ is realcompact and

C-embedded in X. Then »»S = ( U ?_ i A,) u pä (so S is »--embedded in X).

(B) In any locally compact space X, the union of a compact set with a cozero-set

is »»-embedded in X.

R. L. Blair asked whether in both cases above, the hypothesis of local compact-

ness can be omitted. The purpose of this paper is to answer this question

affirmatively. Furthermore, we shall show that the hypothesis of Ge-closedness of B

can be omitted.

Hereafter, C(X) (resp. C*(X)) denotes the set of all real-valued continuous (resp.

bounded continuous) functions on a space X, N the space of natural numbers and

R the space of real numbers. For realcompact spaces, the reader is referred to [1]

and [2].

2. On unions of »»-embedded sets. Firstly we shall show the following lemma

which is needed for our study.

Lemma 2.1. Let X be a space and A, B subspaces of X. If A is closed in vX and B

is v-embedded in X, then A u B is C-embedded in A u vB.
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Proof. Let us denote A u B by S. Let/ £ C(S). Then there exists a g £ C(vB)

which is the extension of f\B. Let us define a real-valued function h: A u vB-* R

as follows.

uB>> = ¡Ap)   if>e,4,

KP)     \g(p)   iipEvB.

Since (A n vB) u B is C-embedded in vB, and B is dense in (A n rB) u B,

/|((y4 n *B) u B) = g\((A n *-B) U B). So /|(¿ n vB) - g|L4 n yB). Hence the
function A is well defined. In order to prove this lemma, it suffices to show that h is

a continuous function on^ u vB. If p E (A u vB) — A, it is easy to prove that h

is continuous at p. So we consider/» £ A. Let G be an open neighborhood of h(p)

in R. Then there exists an open neighborhood H of h(p) in R such that clÄ H c G.

Since /> £ ^4, h(p) = fip). By the continuity of /, there exists an open neighbor-

hood U of p in S such that/(I/) c H. Then there exists an open set U* in A \j vB

such that U* n 5 = U. Let U* = £/* n A, V\* = i/* n vB and l/2 = U* n B.

Then Í/* = t/f u í/¿* and U¡ c clrB £/2. So h(U*) = fiU*) c G and

A(/72*) = g(U;) c gícU l/2) C clÄ g(U2) = clR f(U2) CclR HE G.

Hence h(U*) = h(U*) u ä(t/?) c G. So A is continuous at p. Hence A is a

continuous function on A u p¿?, and the proof of Lemma 2.1 is completed.

Corollary 2.2. Let X be a space and A, B subspaces of X. If B is v-embedded in

X and A is realcompact and C-embedded in X, then A u B is C-embedded in

A u vB.

Proof. Since every realcompact and C-embedded subset of X is closed in vX

[2, 8.10(a)], this follows from Lemma 2.1.

Theorem 2.3. Let X be a space and A, B subspaces of X. If B is v-embedded in X

and A is realcompact and C-embedded in X, then v(A u B) — A u vB. So A u B is

v-embedded in X.

Proof. By [1, Lemma 6.3], A u vB is realcompact, and by Corollary 2.2, A u B

is C-embedded in A u vB. Since A u B is dense in A u vB, v(A u B) = A u vB.

Corollary 2.4. Let X be a space and A 4,. .., An, B subspaces of X. If B is

v-embedded in X and each A¡ is realcompact and C-embedded in X, then v(( U ?_ i A¡)

Ufi) = (U?., A,) u vB. So (U?_i A¡) u B is v-embedded in X.

Corollary 2.5. In any space X, the union of a compact subset with a v-embedded

subset is v-embedded in X.

Since every cozero-set of X is »»-embedded in X [1, Theorem 5.1], Corollary 2.4

and Corollary 2.5 are the answer to R. L. Blair's question quoted in the introduc-

tion. Next, we shall show that in Theorem 2.3 "C-embedded" cannot be weakened

to "C*-embedded". The following example is a modification of the Dieudonné

plank in [3].

Example 2.6. There exists a non-realcompact space which is the union of a

realcompact subspace with a C*-embedded Lindelöf subspace. Hence we cannot
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replace "C-embedded" by "C*-embedded" in Theorem 2.3.

For any ordinal a, W(a) denotes the space of all ordinals less than a with the

usual order topology. Let ux be the first uncountable ordinal. Let D be the subset

of IF(co,) consisting of all isolated ordinals, and D = D u {wi}- Then D is a

discrete space of a nonmeasurable cardinal (so D is realcompact) and D is the

one-point Lindelöfication of D. Let ßN be the Stone-Cech compactification of N.

We construct X as follows.

X = D XßN - ({w,} X (ßN - N)).

We consider X as a subspace of the product space D x ßN. Let A = D x ßN and

B — {u3x} X N. Then X = A u B and A is realcompact and B is Lindelöf. The

space X satisfies the following assertions.

Assertion I.vX = D x ßN, so A' is not realcompact.

Proof. Let / G C(X). Since each point of B is a F-point in X, we can choose a

neighborhood U of o>, in D such that/ is constant on U X {/»} for each n G N.

Since U X N is dense in U X ßN - {«,} X (ßN - N), f is constant on (U -

{w,}) X {p} for each p G ßN — N. Let pv be the constant value of / on (U —

{«,}) X {p} for eachp G ßN - N. We define a real-valued function/: D X ßN

-> R as follows.

/IA' = /    and   f(o¡x,p) = Pu   for eachp G ßN — N.

Then / is a continuous extension of / over D X ßN. Hence X is C-embedded in

D X ßN. Since D X ßN is realcompact and X is dense in £> X ßN, vX = Z) X

j8rV.

Assertion 2. 5 is C*-embedded in X.

Proof. Let / G C*(B). Then there exists a g G C*({w,} X 0A/) such that

g\B = /. Let us define a real-valued function h: D X ßN —» R as follows.

A(a,p) = g(<o„p)    for all a G ¿,P G ßN.

Then A | A" is a continuous extension of / over X.
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