ORTHOCOMPACTNESS AND PERFECT MAPPINGS

DENNIS K. BURKE

ABSTRACT. An example is given which shows that orthocompactness is not preserved by perfect maps. Subparacompact pointwise star-orthocompact spaces are orthocompact; this shows that orthocompactness is preserved by closed maps in the presence of subparacompactness.

A space X is said to be *orthocompact* if every open cover \mathfrak{A} of X has an open refinement \mathfrak{V} such that if $\mathfrak{V}' \subset \mathfrak{V}$, then $\bigcap \mathfrak{V}'$ is open in X. Such a refinement \mathfrak{V} of \mathfrak{A} is called a *Q*-refinement, and any open collecton \mathfrak{W} such that $\bigcap \mathfrak{W}'$ is open whenever $\mathfrak{W}' \subset \mathfrak{W}$ is called a *Q*-collection. The main purpose of this note is to provide an example showing the nonpreservation of orthocompactness under a perfect mapping, thus answering a question asked by B. Scott in $[S_1]$ and $[S_2]$. The reader is referred to these papers for an in-depth discussion of orthocompactness, especially the product theory.

The description of the example follows below. We use the convention that an ordinal number is the set of smaller ordinals, and I denotes the "closed unit interval" from R. A mapping is a continuous onto function.

EXAMPLE 1. There exists an orthocompact space X and a perfect mapping $f: X \to Y$ onto a nonorthocompact space Y.

PROOF. Let $X_0 = \omega_1 \times I \times \{0\}$, $X_1 = \omega_1 \times I \times \{1\}$, and $X = X_0 \cup X_1$. For $\alpha, \beta \in \omega_1, \alpha$ a nonlimit ordinal with $\alpha \leq \beta, x \in I$, and $\varepsilon > 0$ define

$$B(\alpha, \beta, x, \varepsilon) = \{(\gamma, z, 0) \in X_0 : \alpha \leq \gamma \leq \beta, 0 < |x - z| < \varepsilon\}$$
$$\cup \{(\gamma, z, 1) \in X_1 : \alpha \leq \gamma \leq \beta, |x - z| < \varepsilon\}.$$

Topologize X by describing local bases as follows: Points $(\beta, x, 0) \in X_0$ are isolated in X. Points $(\beta, x, 1) \in X_1$ have the set of all $B(\alpha, \beta, x, \varepsilon)$, for nonlimit $\alpha < \beta$ and $\varepsilon > 0$, for a local base. It may be revealing to the reader to provide a simple sketch here, and realize that X is similar to, but not quite the same as, the "Alexandroff double" of $\omega_1 \times I$.

To show X is orthocompact, let \mathfrak{A} be an open cover of X. For each $x \in I$ consider \mathfrak{A} as an open cover of $H_x = \omega_1 \times \{x\} \times \{1\}$. There exists a nonlimit ordinal $\alpha_x < \omega_1$, an uncountable subset $A_x \subset [\alpha_x, \omega_1)$, and $\varepsilon_x > 0$ (use $\varepsilon_x = 1/n$ for some appropriate positive integer n) such that for each $\beta \in A_x$ we have $B(\alpha_x, \beta, x, \varepsilon_x) \subset U$ for some $U \in \mathfrak{A}$. Note that the collection $\mathfrak{M}_x = \{B(\alpha_x, \beta, x, \varepsilon_x): \beta \in A_x\}$ is a Q-collection. For $x \in I$, let $J_x = \{z \in I: |x - z| < \varepsilon_x\}$; then $\mathcal{G} = \{J_x: x \in I\}$ is an open cover of I so there is a finite set $F \subset I$ such

Received by the editors July 2, 1979 and, in revised form, August 29, 1979.

AMS (MOS) subject classifications (1970). Primary 54D20; Secondary 54C10, 54G20.

that $I = \bigcup \{J_x : x \in F\}$. If $\beta_0 = \max\{\alpha_x : x \in F\}$, the subspace $Z = \{(\alpha, x, i) : 0 \le \alpha \le \beta_0, x \in I, i \in \{0, 1\}\}$

is an open Lindelöf subspace of X, so there is an open cover \mathcal{V} of Z such that \mathcal{V} is a Q-collection and each $V \in \mathcal{V}$ is contained in some $U \in \mathcal{U}$. It follows that

$$\mathfrak{W} = \mathfrak{V} \cup (\bigcup \{\mathfrak{W}_x \colon x \in F\}) \cup \{\{p\} \colon p \in X_0\}$$

is a Q-cover of X that refines \mathfrak{A} .

Now let $Y = X_0 \cup \omega_1$ and define a map $f: X \to Y$: f(p) = p for $p \in X_0$ and $f(\alpha, x, 1) = \alpha$ for $(\alpha, x, 1) \in X_1$. Let Y have the quotient topology induced by f. Clearly $f^{-1}(y)$ is compact in X for each $y \in Y$ so to show f is perfect it suffices to show f is a closed mapping. Let $E \subset X$ be closed; to show f(E) is closed in Y we need only show that for any $\beta \in \omega_1 - f(E)$ there is an open neighborhood V of β in Y such that $V \cap f(E) = \emptyset$. Now $f^{-1}(\beta) \cap E = (\{\beta\} \times I \times \{1\}) \cap E = \emptyset$ so for each $x \in I$ there is $\delta_x > 0$ and nonlimit $\alpha_x < \beta$ such that $B(\alpha_x, \beta, x, \delta_x) \cap E = \emptyset$. Using the compactness of I, we see that there is some $r_0 > 0$, nonlimit $\gamma_0 < \beta$, and a finite set $F \subset I$ such that

$$\left(\cup\left\{B(\gamma_0,\beta,x,r_0):x\in F\right\}\right)\cap E=\emptyset$$

and $\{\beta\} \times I \times \{1\} \subset \bigcup \{B(\gamma_0, \beta, x, r_0): x \in F\}$. Since $\bigcup \{B(\gamma_0, \beta, x, r_0): x \in F\}$ is saturated with respect to f, we have $V = f(\bigcup \{B(\gamma_0, \beta, x, r_0): x \in F\})$ as the desired neighborhood of β in Y where $V \cap f(E) = \emptyset$.

To see that Y is not orthocompact, we note that if $\beta \in \omega_1$ and $U \subset Y$ is open, with $\beta \in U$, there must be some nonlimit $\alpha < \beta$ such that $[\alpha, \beta] \subset U$ and $[\alpha, \beta] \times \{x\} \times \{0\} \subset U$ for all but finitely many $x \in I$. Let $B = \{z_{\alpha} : \alpha < \omega_1\}$ be a subset of I, indexed by ω_1 , where $z_{\alpha} \neq z_{\beta}$ if $\alpha \neq \beta$. For each $\beta < \omega_1$ let $G_{\beta} = f(B(0, \beta, z_{\beta}, 1))$ and $\mathcal{G} = \{G_{\beta} : \beta < \omega_1\}$; then \mathcal{G} is an open cover of Y and if \mathcal{K} is any open refinement of \mathcal{G} there is some $\gamma \in \omega_1$ such that $[\gamma, \omega_1) \subset St(\gamma, \mathcal{K})$. This can happen only if there is an uncountable set $A \subset [\gamma, \omega_1]$ where for each $\beta \in A$ there is $H_{\beta} \in \mathcal{K}$ such that $\gamma \in H_{\beta} \subset G_{\beta}$. It follows that

$$\left(\bigcap_{\beta\in A} H_{\beta}\right)\cap (\omega_{1}\times\{z_{\alpha}\}\times\{0\})=\emptyset$$

for every $\alpha \in A$, hence $\gamma \notin int(\bigcap_{\beta \in A} H_{\beta})$ and \mathcal{K} cannot be a *Q*-refinement of \mathcal{G} . That concludes the verification of the stated properties of Example 1.

The proof, in the above example, that Y is not orthocompact, was given for completeness. Other authors have considered similar examples and results which essentially show the nonorthocompactness of Y. G. Gruenhage [G] gave an example of a nonorthocompact space which is the closed image of an orthocompact space. Gruenhage's range space is homeomorphic to a closed subspace of Y (and, under CH, is homeomorphic to Y) and certainly Gruenhage's result implies the nonorthocompactness of Y. The essential reason for the nonorthocompactness of Y can also be culled from results in [S₁] or [S₂], which show that $\omega_1 \times (\omega_1 + 1)$ is not orthocompact. For other related results on the construction of nonorthocompact spaces the reader is referred to [HL].

D. K. BURKE

The existence of Example 1 increases the importance of several generalizations of orthocompactness, considered by other authors, that are preserved under closed or perfect mappings. Weakly orthocompact spaces $[S_1]$ are preserved under perfect maps, discretely orthocompact spaces [J] are preserved under closed mappings, and pointwise star-orthocompact spaces [G] are preserved under closed mappings. These concepts are useful in helping to preserve orthocompactness, under closed maps, when in the presence of other covering properties. Junnila [J] has shown that a θ -refinable space X is orthocompact if it is discretely orthocompact (see [J] for definition) and as a corollary he obtains:

THEOREM 2 [J]. If $f: X \to Y$ is a closed continuous onto map, and X is a θ -refinable orthocompact space, then so is Y.

A somewhat weaker result can be obtained via the pointwise star-orthocompactness defined by Gruenhage [G]. A space X is *pointwise star-orthocompact* if for any open cover \mathfrak{A} of X there is a Q-collection $\{V_x : x \in X\}$ such that $x \in V_x \subset$ $St(x, \mathfrak{A})$ for each $x \in X$. Gruenhage shows that any pointwise star-orthocompact developable space is orthocompact; a modification of Gruenhage's proof actually yields the following stronger result.

THEOREM 3. If X is a subparacompact pointwise star-orthocompact space then X is orthocompact.

PROOF. If \mathfrak{A} is an open cover of the subparacompact space X there is a sequence $\{\mathscr{G}_n\}_1^\infty$ of open covers of X such that if $x \in X$ there is some $n \in N$ (depending on x) such that $St(x, \mathscr{G}_n) \subset U$ for some $U \in \mathfrak{A}$ (see [B]). Apply pointwise star-orthocompactness to each \mathscr{G}_n and it follows that \mathfrak{A} has an open refinement which is the union of a countable number of Q-collections. Since a subparacompact space is countably metacompact, we see that X is orthocompact [S₁].

Since subparacompactness is preserved under closed maps [B], we have the weaker version of Theorem 2, using "subparacompact" in place of " θ -refinable".

References

[B] D. Burke, On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663.

[G] G. Gruenhage, On closed images of orthocompact spaces, Proc. Amer. Math. Soc. 77 (1979), 389-394.

[HL] R. W. Heath and W. F. Lindgren, On generating nonorthocompact spaces, Set-Theoretic Topology, Academic Press, New York, 1977, pp. 225-237.

[J] H. Junnila, Covering properties and quasi-uniformities of topological spaces, Doctoral dissertation, Virginia Polytechnic Inst. and State Univ., 1978.

[S₁] B. M. Scott, Toward a product theory for orthocompactness, Studies in Topology, Academic Press, New York, 1975, pp. 517-537.

[S₂] _____, More about orthocompactness (to appear).

DEPARTMENT OF MATHEMATICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056

486