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ORTHOCOMPACTNESS AND PERFECT MAPPINGS

DENNIS K. BURKE

Abstract. An example is given which shows that orthocompactness is not pre-

served by perfect maps. Subparacompact pointwise star-orthocompact spaces are

orthocompact; this shows that orthocompactness is preserved by closed maps in

the presence of subparacompactness.

A space X is said to be orthocompact if every open cover % of X has an open

refinement "V such that if T' c % then D T' is open in X. Such a refinement "V

of % is called a Q-refinement, and any open collecton % such that D W is open

whenever W c % is called a Q-collection. The main purpose of this note is to

provide an example showing the nonpreservation of orthocompactness under a

perfect mapping, thus answering a question asked by B. Scott in [S4] and [S2]. The

reader is referred to these papers for an in-depth discussion of orthocompactness,

especially the product theory.

The description of the example follows below. We use the convention that an

ordinal number is the set of smaller ordinals, and / denotes the "closed unit

interval" from R. A mapping is a continuous onto function.

Example 1. There exists an orthocompact space X and a perfect mapping /:

X -> Y onto a nonorthocompact space Y.

Proof. Let X0 = w, x / x {0}, Xx = w, x / x {1}, and X = X0 u Xx. For

a, ß E ux, a a nonlimit ordinal with a < ß, x E I, and e > 0 define

B(a, ß, x, e) = {(y, z, 0) £ X0: a < y < ß, 0 < \x - z\ < e}

U {(y, z, 1) £ Xx: a < y < ß, \x - z\ < e}.

Topologize X by describing local bases as follows: Points (ß, x,0) E X0 are

isolated in X. Points (ß, x, 1) £ Xx have the set of all B(a, ß, x, e), for nonlimit

a < ß and e > 0, for a local base. It may be revealing to the reader to provide a

simple sketch here, and realize that X is similar to, but not quite the same as, the

"Alexandroff double" of w, X /.

To show X is orthocompact, let % be an open cover of X. For each x E I

consider % as an open cover of Hx = <o, X {x} X {1}. There exists a nonlimit

ordinal ax < to,, an uncountable subset Ax c [ax, w,), and ex > 0 (use e^ = l/n for

some appropriate positive integer n) such that for each ß E Ax we have

B(ax, ß, x, ex) c U for some U E Gti. Note that the collection GliSx =

{B(ax, ß, x, ex): ß E Ax} is a g-collection. For x E I, let Jx = {z E I: \x - z\ <

ex); then % = [Jx: x E 1} is an open cover of / so there is a finite set F c I such
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that / = U [Jx. x G F}. If ß0 = max{ax: x G F}, the subspace

Z = {(a, x, i): 0 < a < ft» x G /, i G {0, 1}}

is an open Lindelöf subspace of X, so there is an open cover 'Y of Z such that T is

a (2-collection and each KETis contained in some U G %. It follows that

<¥ = T u (U {%,: x G F}) u {{p):p G X0)

is a g-cover of A that refines 6ll.

Now let y = A',, u W] and define a map /: A" -» 7: /(p) = p for p G X0 and

/(a, x, 1) = a for (a, x, 1) G Xx. Let y have the quotient topology induced by/.

Clearly/_1(y) is compact in X for eachy G y so to show/is perfect it suffices to

show / is a closed mapping. Let E c X be closed; to show f(E) is closed in Y we

need only show that for any ß G w, — f(E) there is an open neighborhood V of ß

in y such that V n /(F) = 0. Now/_1(j8) n F = ({ ß) X I X {1}) n E - 0 so

for each x G /. there is ó^ > 0 and nonlimit ax < ß such that /»(or*, ß, x, 8X) n F

= 0. Using the compactness of /, we see that there is some r0 > 0, nonlimit

y0 < ß, and a finite set F c I such that

(U {B(y0, ß, x, r0): x G F}) n E = 0

and { 0} X / X {1} c U {B(y0, ß, x, r0): x G F}. Since U {B(y0, ß, x, /•„): x G

F} is saturated with respect to/, we have F = /(U {£(y0, ß, x, r0): x G F}) as the

desired neighborhood of ß in Y where V n /(F) = 0.

To see that Y is not orthocompact, we note that if ß G wx and U G Y is open,

with ß G U, there must be some nonlimit a < ß such that [a, /?] c U and

[a, 0] X {x} X {0} c U for all but finitely many x G /. Let B - [za: a < w,} be

a subset of /, indexed by <o„ where za =/= zß if a =/= ß. For each ß < ux let

G¿, = /(5(0, /?, z^, 1)) and § = {G^: /? < w,}; then § is an open cover of Y and if

% is any open refinement of § there is some y G u, such that [y, w,) c St(y, %).

This can happen only if there is an uncountable set A c [y, ux) where for each

ß G A there is Hß G % such that y G Hß c G^. It follows that

( fi   /Ün(<o1x{za}x{O})=0
\ß<EA I

for every a G A, hence y G int(DßeAHß) and DC cannot be a (¿-refinement of S.

That concludes the verification of the stated properties of Example 1.

The proof, in the above example, that Y is not orthocompact, was given for

completeness. Other authors have considered similar examples and results which

essentially show the nonorthocompactness of Y. G. Gruenhage [G] gave an

example of a nonorthocompact space which is the closed image of an orthocom-

pact space. Gruenhage's range space is homeomorphic to a closed subspace of Y

(and, under CH, is homeomorphic to Y) and certainly Gruenhage's result implies

the nonorthocompactness of Y. The essential reason for the nonorthocompactness

of y can also be culled from results in [Sj] or [SJ, which show that w, X (ux + 1)

is not orthocompact. For other related results on the construction of nonorthocom-

pact spaces the reader is referred to [HL].
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The existence of Example 1 increases the importance of several generalizations

of orthocompactness, considered by other authors, that are preserved under closed

or perfect mappings. Weakly orthocompact spaces [Sj] are preserved under perfect

maps, discretely orthocompact spaces [J] are preserved under closed mappings, and

pointwise star-orthocompact spaces [G] are preserved under closed mappings.

These concepts are useful in helping to preserve orthocompactness, under closed

maps, when in the presence of other covering properties. Junnila [J] has shown that

a 0-refinable space X is orthocompact if it is discretely orthocompact (see [J] for

definition) and as a corollary he obtains:

Theorem 2 [J]. Iff: X -» Y is a closed continuous onto map, and X is a 9-refinable

orthocompact space, then so is Y.

A somewhat weaker result can be obtained via the pointwise star-orthocompact-

ness defined by Gruenhage [G]. A space X is pointwise star-orthocompact if for any

open cover % of X there is a g-collection {Vx: x £ X} such that x £ Vx c

St(x, %) for each x E X. Gruenhage shows that any pointwise star-orthocompact

developable space is orthocompact; a modification of Gruenhage's proof actually

yields the following stronger result.

Theorem 3. If X is a subparacompact pointwise star-orthocompact space then X is

orthocompact.

Proof. If <?L is an open cover of the subparacompact space X there is a sequence

{!?„ }" of open covers of X such that if x E X there is some n £ N (depending on

x) such that St(x, §„) c U for some U E % (see [B]). Apply pointwise star-ortho-

compactness to each §n and it follows that % has an open refinement which is the

union of a countable number of ß-collections. Since a subparacompact space is

countably metacompact, we see that X is orthocompact [S,].

Since subparacompactness is preserved under closed maps [B], we have the

weaker version of Theorem 2, using "subparacompact" in place of "0-refinable".
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