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SLICING CONVEX BODIES-BOUNDS FOR SLICE AREA

IN TERMS OF THE BODY'S COVARIANCE

DOUGLAS HENSLEY1

Abstract. Let Q be a zero-symmetric convex set in R* with volume 1 and

covariance matrix VHàNXN. Let P be a A'-dimensional vector subspace of R", K

< N, and let J = N - K. Then there exist constants C,(7) and C2(J) such that

v-Jcx(J) < vo\k(p n Q) < v-Jc2(J).

The lower bound has applications to Diophantine equations.

1. Introduction. The restriction to bodies of covariance a constant multiple of

Idjvxjv and volume 1 made in the abstract is not essential, as any centro-symmetric

convex body can be brought to that form by a suitable linear transformation. Yet

such bodies comprise the most important special cases. The unit cube, the Lx ball

2í'|-*,| < r of volume 1 and the "complex cube" \z¡\ < ir~x^2, 1 < / < N, are

examples.

For the case of the cube, real or complex, only the upper bound is of interest as

there is a sharp lower bound of 1, independent of K and N, due to Vaaler [10].2 For

the real cube in the case K = N - 1 an upper bound of 5 was given in [6], which

we improve here to Vó .

Examples with a cube show that CX(J) $ 12"-7/2 and C2(J) <£ 6_y/2. We take

CX(J) = (J + 2)-J/2mJ/2Y(\j + l),

C2(J) = 2(8(log 2)~J-\J + 2)!)y/V/2r(i/ + l)   for y > 2,

and C2(l) = 1/V2 . Then we have

Theorem 1. Let Q be a centro-symmetric convex body in RN with volume U and

diagonal covariance matrix (V28¡f), 1 < i,j < N. Let P be a K-dimensional vector

subspace of R" with K < N, K + J = N. Let

U-N-2W V2\ and   c,. = Vy-'V-''2.

Let WK be the product of the K smallest c, and W'K the product of the K largest c¡.
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Then

CX(J)WKV-J < volK(P nß)< c2(j)wKv-J.

If all the V¡ are equal to some V, and U = 1 then all c„ WK, and W'K are 1 and

Theorem 1 reduces to

Theorem 1'. Let Q be a centro-symmetric convex body in RN with volume 1 and

covariance matrix V2\dN^N. Let P be a K-dimensional vector subspace of RN, K <

NandJ= N - K. Then

V~JCX(J) < volK(P n Q) < V~JC2(J).

Theorem 1 follows from 1' by an elementary lemma whose proof we omit. (But

see Example 12, [8].)

Lemma 1. Let E be a convex set in RN of dimension K < N. Let T be a linear

transformation which maps each unit coordinate vector e¡, 1 < / < N, in RN to c¡e¡,

with c, > 0. Let E' = TE. Let WK be the product of the K smallest c, and W'K the

product of the K largest c¡. Then

WKwolKE < volKE' < W'Kvo\KE.

One may adapt our lower bound to Vaaler [12] by using a variant of his Lemma

6. Suppose Q E RN has volume 1, is centro-symmetric and has covariance matrix

Cov(ö) = V2ldNKN- Let Ly(x), 1 < j < N, be N real linear forms in K variables,

Lj(x) = S£_iO,*x*, so that A = (aJk) is an N X K matrix, with N > K, N = K +

J.

Lemma 6'. Let M be a positive integer and suppose that

M\detATA\x'2 < V'JCX(J).

Then there exist at least M distinct pairs of nonzero lattice points ± t5m, 1 < m < M,

such that for each m,

L = (¿y(»J) G 2Q.

With Lemma 6' in place of Lemma 6 of [12] and following [12] otherwise, we

have a generalization of that paper's main result. Let Aj(x) = SjL^x^ for

1 < j < / be J real linear forms in K real variables x,, . . . , xK. Let N = J + K.

Let Q be centro-symmetric and convex with \olNQ = 1 and Co\(Q) = ry2IdA,XJV.

For y G R* let l(y) = (yx,y2, ...,yK, Ax(y), ..., Aj(y)) E RN.

Theorem 2. Let M be a positive integer and suppose that

A/2!n(i + ||^|2)<c,(y)F-^.

Then there exist M distinct pairs of nonzero lattice points ±vm, I < m < M, in ZK

such that l(±vm) E 2Q.
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Remark. When Q is taken to be the unit cube we get a weaker version of

Theorem 1 in [12] with all ak and /S, there being 1; our more general lower bound is

not as sharp for the cube as that in [11].

2. Proofs. Lemma 6' follows from the proof in [11] of Theorem 2 (which appears

in [12] as Lemma 6), but we use our Theorem 1' in place of Theorem 1 of [11].

For the proof of Theorem 1 from Theorem 1' we take the c, in the statement of

Theorem 1 as defining T, and let Q' = T~XQ, P' = T~XP. Applying Theorem 1'

to Q' and then Lemma 1 to the resulting bounds on vol^P nß') gives Theorem

1.

It remains to prove Theorem 1'. For the proof we shall need some lemmas about

centro-symmetric log concave functions. (A function /: RJ -» R+ u {0} is log

concave if log/ is concave.)

Lemma 2. Suppose f: RJ -h> R+ u {0} satisfies fix) = /(-3c), {3c: fix) > t} is

convex and open for each t, and }# fix) dJ(5c) = 1. Suppose further that for all unit

9 6RJ,

f (x-9ff(x)dJ(x)<V2.

Then

f(0) > V-J(J + 2YJ,2^JI2Y{X2J + l) = V-JCX(J).

Proof. Let h: R/-»R+u{0} be constant at V~JCX(J) for ||3c||<7? =

V(J + 2)1/2, and 0 for ||3c|| > R. Then /^ h = 1 and /^ xfh = V2, so h satisfies

the hypotheses of Lemma 2. Thus to prove the lemma it suffices to prove that if

f*h,f(Ö)>h(Ö).
We first show that / can be replaced by an /, such that /, is circular symmetric,

that is, /,(*) =/,(y) if ||3c|| = ||y||, and such that/,(()) =/(5) and/, satisfies the

hypotheses of the lemma.

For let E, = {x: fix) > t). By hypothesis E, is convex, and if t < s, Es G Et.

Thus

/ Ax)=fm(  ldJ(x)dt, (3)
■V •'r-O   JE,

while

f  x2f(x)=fm f xfd\x)dt. (4)
•^ ■'i-O   JE,

Let E¡ be the ball about 5 of the same voly as Et, and letfx(x) = sup{f : 3c G Tí/}.

Then

Í /.(*) » fm [   1 dJ(x) dt = fm f   1 dJ(x) dt=f f(x) = 1.     (5)
•'r-' •'o      je; jo      je, jr/

Further,

f  xffx(x) = J~xf ||3c|ft(Jc) = J~xfm [ \\x\\2dJ(x) dt. (6)
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Now consider a particular value of t. If we show that /£-||x||2 < /£||x||2, the

claim about/, is proved. So let INT = E't n F„ EX = F, \ E¡ and EX' = E't \ E,.

Then

f \\x\\2 = f    PlP + f   ll^ll2 > [    \\x\\2 + (   \\x\\2 = [ \\x~W2,
je, jwt jex •'int ■'ex- •>e;

because ||x||2 is everywhere in EX at least as large as anywhere in EX' and

voly_,EX = voL_,EX. Thus fw\\x\\%(x) d\x) < i^\\x\\2f(x) dJ(x), and because

of the circular symmetry of/,, Jgj(x ■ By^f^x) dJ(x) < V2 for all unit vectors 9.

Now suppose the lemma is false and h(0) >/(0) = /,(0). Since h and/, depend

only on ||x|| = r we shall by an abuse of language write h(r),fx(r) for /t(x),/,(x)

when ||x|| = r. (For r < R, h(r) = h(0), as well.) Now

f ft(x) dJ(x) = C fx(r)JojrJ-1 dr = 1 = f   h(x) dJ(x)

= V-JCx(J)JojfR rJ~x dr.

Let Fx(r) = fr0fx(u)JojUJ~x du and H(r) = y0h(u)JojUJ~x du. Since for r<

R, h(0) = h(r) >fx(r) while for r > R, 0 = h(r) < fx(r), we have H(r) > Fx(r) for

0 < r < R, and H(r) > Fx(r) in any case. Thus

f °° 2rF,(r) dr < f °° 2rH(r) dr

r°° r°° f00 r R

\     r2dFx(r)=\     r2fx(r)JojrJ-x dr >        r2 dH(r) = |    r2h(0)JojrJ-1 dr.
J0 J0 j0 J0

and

In other words,

f ||x||2/,(x)^(x) > f \\x\\2h(x) dJ(x),
JRJ JRJ

a contradicition.    □

Remark. Log concave centro-symmetric functions which satisfy the covariance

hypothesis satisfy the other hypotheses of Lemma 2, as is proved in the preliminary

lemma of [2]. Lemma 2 gives a sharp lower bound since an extremal function, h, is

found. Our next lemma is not as sharp.

Lemma 3. Suppose f: R7 -^ R+ u {0} satisfies fix) = fi-x), is log concave, and

f^j fix) dJ(x) = 1. Suppose further that for all unit 6 E RJ,

f (xè)2fix)dJ(x) > V2.■V

Then /(0) < V~JC2(J), where C2(J) is the same as in Theorem 1.

Proof. Let F, = {x G RJ:f(x) > ^/(Ö)}. F, is convex and centro-symmetric. Let

F, = iEx \(i - 1)F, for /' > 1, so that RJ is the disjoint U,0!, E¡. Let r be the

minimal radius of F,, and let 0 be a unit vector in the direction of a point on 9F, of

norm r.
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Since /R, (3c • Offix) dJ(x) > V2,

V2 < 2    f (*-0")2/(*) ̂(Jf) < 4 f  /y+22"V2
<=1   JEi ,= 1

because voLTi, < 2//(U) and /£,(x • f?)2/(3c) rfy(3c) < (2//(Ö))r2/(Ö) = 2r2. Now

4|¡ /•/+22-V2 < 8r2 f °° sJ+22~s ds = Dr2 = 8r2(log 2)"y-3(/ + 2)!
i •'o

by the integral comparison test. Thus r > D~X/2V. On the other hand 2 >

f(Ô)vo\j(Ex) > f(0)ojrJ so

/(Ö) < 2r-JOj-x < 2V~JDJ'2oJx

= v~J• 2(8(iog2)_y"V + 2)!)y/277--//2r(|y + l) = V~JC2(J).  n

In case J = 1 we can find the extremal function and obtain a sharper upper

bound.

Lemma 4. Suppose f: R —> R+ u {0} satisfies fix) = fi-x), is log concave, and

fRf(x) dx = 1, /R x2f(x) dx = V2. ThenfiO) > 2~x/2V~l.

Proof. Let a = fiO). Since /"x e"2a|x| í¿c = 1, fix) cannot be everywhere >

ae_2"w. They are equal at 0, so either fix) = ae~2a|jt| or there exists ß > 0 such

that for 0 < x < ß,f(x) > ae~2a^ while for x > ß,f(x) < ae_2a|jc|. (Both are log

concave.)

Now let F(x) = ¡'fit) dt and G(x) = ¡% ae-2"1'1 i/. Then

/OO /«OOjc2(/(x) - ae"2aW) dx = 2 f    x2(/(x) - ae"2<") ¿x
-oo •'O

= 4 f°° x(G(jc) - T^W) rfx
•'o

since x2(F — G) declines exponentially to zero at ± oo. Since F(0) = G(0) = 0 and

F(co) = G(oo) =\, and since d(F - G)/dx > 0 only for 0 < x < ß,

x(G(x) - F(x)) is always negative and J00«, x2(f(x) - ae"2"1'1) dx < 0.   □

What does all this have to do with vol^T^ (1 Q)1 Let Kj denote the unit cube

\x¡\ < \, K < i' < N. Let B denote the null matrix of P, so that B has Af columns

and J rows, and Bx = 0 if x G P. Without loss of generality we may assume

rank(Ä) = J. Let Be = [7i|eldy><y], and let Pe be the null space of Be. Then

lim volN(Pe n (Q x Kj)) = vol^T» n Q), (7)
E—»0

and

volN(Pe n (Q X Kj)) = volN{z: Btz = 0 and z GQ X Ä,}. (8)

We wish to compare the volume in (8) to its projection onto the first N

coordinates, vol^Jc G Q: Bx G eKj}). This ratio is e_,/(det BeB^)x/2, which we

now prove.

We shall need a lemma about how areas are affected by projection. If a, ... aN

are column vectors in RN+J, if A = [äxä2 . . . äN]T is a matrix of N + J columns
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and   N   rows,   and   Box,, — {ä:   ä = 2f A,â(, 0 < X¡ < 1}   then   vol^Box^ =

(det AA T)x/2 (Eves [3]).

Now suppose A has the form [IdNxA,| - D] and let A' = [Dr|Idyxy].

Lemma 5. Det(AA T) = Det(A'A'T).

Proof. By the Cauchy-Binet theorem, Det(AA T) = S „(det a)2 where the sum-

mation is over all N X N minors a of A [5]. Now a typical a consists of / columns

of ldNxN and m columns of D, I < N, m < J, I + m = N.

« = (ê„ ê„ ■ ■ ■ ëa - Da     - D„     -¿_ 1

Expanding det a about the 1st through /th columns, each of which contain 1 once

and otherwise zeros, we have Det(a) = ± Det(/î) where ß is the square matrix

consisting of the intersection of the N — I rows not indexed by a,, a2 . . . a, and the

m columns of -D belonging to a. Thus det(AA T) = 1 + S^det ß)2, the sum taken

over all m X m minors of D, m < /. But Det(A'A'T) = 2Y(det y)2, sum over J X J

minors y of A', and these may be expanded about the columns of Idy xy to obtain

again 1 + 2/det ß)2.   D

Now let b¡, 1 < /' < N, denote the column vectors of B. Let

Then BeA T = (0yxAr) so that the 5¡ are vectors in Null(Ft). When these a¡ are

projected onto their first JV coordinates they are ëx,ë2... ëN. Therefore they are

linearly independent and form a basis of Null(Fe) = Fe.

Now vol^Box^ = (det AA T)x/2 while vol^ProjiBox^) = 1 as ë, ... ëN are ortho-

normal. The ratio of volumes, (det AA T)x/2, is independent of which measurable

set is projected.

Now A has the form A = [IdjvXA,| — D] with D = e~xBT, so that A' —

[e-'FlId^J.Thus

(det AA T)x/2 = (det A'A'T)X/2   by Lemma 5

= e-'(detFe2?/)1/2,

and this is the ratio of a volume in Pe to the volume of its projection onto the first

N coordinates, as claimed.

Since we can find vol^(Fe D (Q X Kj)) from vol^x E Q: Bx E eKj}, we turn

our attention to this last. It may be regarded as the probability that an x taken "at

random" from Q (the probability measure being Lebesgue measure restricted to Q)

will satisfy Bx E eKj. Let fix) denote the probability density function of Bx. Since

Q is convex, /(x) is log concave. (This is the key observation.)

For let p denote the probability measure associated with /, and v Lebesgue

measure restricted to Q. Let j = 1 — /, 0<f< 1, and let C, D be open convex

sets in Ry. Let B~XC, B~XD be the inverse images in R* under B of C and D

respectively. From Prekópa [9], since Xg> the characteristic function of Q, is log

concave, the measure v is log concave, that is, v(sC + tD') > (v(C')Y(v(D'))'. Let

and   A T = \axa2 . . . aN\
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C = B~XD,D' = B~XD. Then

p(sC + tD) = »-(¿"'(jC + tD)) - p(í5_1C + <7¿~'7))    (since 5 is linear)

= v(sC + tD') > (v(C'))s(V(D'))' = (p(C)Y(p(D))'.

So u is a log concave measure and, again by Prekópa [9], / is a log concave

function. Now as e -» 0,

Prob(£3c G eKj) ~ eJf(0~). (9)

Also,

Cov(/)l7 = f  xiXjf(x) dJ(x) = ( V2BB % (10)

Let X be the random vector uniformly distributed on Q. Since BB T is self adjoin t

and positive definite (rank B = J), there is a square matrix S such that SST =

BBT[l].

Let Y be the random vector Y = S ~XBX. Then Cov(BX) =_V2BBT, so Cov(T)

= V2S~lBBTS~XT = V2ldJXJ, since for any random vector Z, any square matrix

U, Cov(UZ) = E(UZ(UZ)T) = E(UZZTUT) = UE(ZZT)UT = U Co\(Z)UT

because expectation (7Í) is linear.

Let h(x) be the probability density function associated with Y. Then

A(5) = (det7i7ir),/2/(5), (11)

Cov(/0 = Cov(F)= K2Id/xy, (12)

and since log concavity is preserved under the linear transformation S~x, h is log

concave.

Applying Lemmas 2 and 3 to h, and Lemma 4 in case / = 1, we have from (12)

that

CX(J)V-J <h(0)<C2(J)V-J (13)

and from (7) through (11) that

CX(J)V~J < volK(P n Q) < c2(j)v-J.   □
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