SLICING CONVEX BODIES-BOUNDS FOR SLICE AREA IN TERMS OF THE BODY'S COVARIANCE

DOUGLAS HENSLEY¹

ABSTRACT. Let Q be a zero-symmetric convex set in \mathbb{R}^N with volume 1 and covariance matrix $V^2 Id_{N \times N}$. Let P be a K-dimensional vector subspace of \mathbb{R}^n , K < N, and let J = N - K. Then there exist constants $C_1(J)$ and $C_2(J)$ such that

 $V^{-J}C_1(J) \leq \operatorname{vol}_{K}(P \cap Q) \leq V^{-J}C_2(J).$

The lower bound has applications to Diophantine equations.

1. Introduction. The restriction to bodies of covariance a constant multiple of $Id_{N \times N}$ and volume 1 made in the abstract is not essential, as any centro-symmetric convex body can be brought to that form by a suitable linear transformation. Yet such bodies comprise the most important special cases. The unit cube, the L^1 ball $\sum_{i=1}^{N} |x_i| \le r$ of volume 1 and the "complex cube" $|z_i| \le \pi^{-1/2}$, $1 \le i \le N$, are examples.

For the case of the cube, real or complex, only the upper bound is of interest as there is a sharp lower bound of 1, independent of K and N, due to Vaaler [10].² For the real cube in the case K = N - 1 an upper bound of 5 was given in [6], which we improve here to $\sqrt{6}$.

Examples with a cube show that $C_1(J) \ge 12^{-J/2}$ and $C_2(J) \le 6^{-J/2}$. We take

$$C_{1}(J) = (J+2)^{-J/2} \overline{\pi}^{J/2} \Gamma(\frac{1}{2}J+1),$$

$$C_{2}(J) = 2(8(\log 2)^{-J-3}(J+2)!)^{J/2} \overline{\pi}^{J/2} \Gamma(\frac{1}{2}J+1) \text{ for } J \ge 2,$$

and $C_2(1) = 1/\sqrt{2}$. Then we have

THEOREM 1. Let Q be a centro-symmetric convex body in \mathbb{R}^N with volume U and diagonal covariance matrix $(V_i^2 \delta_{ij})$, $1 \le i, j \le N$. Let P be a K-dimensional vector subspace of \mathbb{R}^N with K < N, K + J = N. Let

$$V = \left(U^{-N-2} \prod_{i=1}^{N} V_{i}^{2} \right)^{1/2N} \text{ and } c_{i} = V_{i} V^{-1} U^{-1/2}.$$

Let W_K be the product of the K smallest c_i and W'_K the product of the K largest c_i .

© 1980 American Mathematical Society 0002-9939/80/0000-0375/\$02.75

Received by the editors January 26, 1979 and, in revised form, October 12, 1979; presented to the Society, August 22, 1979.

AMS (MOS) subject classifications (1970). Primary 52A40, 60D05; Secondary 10B45, 10E05, 52A20. Key words and phrases. Log concave, convex body, covariance, slice area bounds.

¹This research was supported by National Science Foundation grant #MCS-7905409.

²The lower bound 1 for the case K = N - 1 is implicit in H. Hadwiger's *Gitterperiodische Punktmengen and Isoperimetrie*, Monatsh. Math. **76** (1972), 410-418.

Then

$$C_1(J)W_KV^{-J} \leq \operatorname{vol}_K(P \cap Q) \leq C_2(J)W'_KV^{-J}.$$

If all the V_i are equal to some V, and U = 1 then all c_i , W_K , and W'_K are 1 and Theorem 1 reduces to

THEOREM 1'. Let Q be a centro-symmetric convex body in \mathbb{R}^N with volume 1 and covariance matrix $V^2 \mathrm{Id}_{N \times N}$. Let P be a K-dimensional vector subspace of \mathbb{R}^N , K < N and J = N - K. Then

$$V^{-J}C_1(J) \leq \operatorname{vol}_K(P \cap Q) \leq V^{-J}C_2(J).$$

Theorem 1 follows from 1' by an elementary lemma whose proof we omit. (But see Example 12, [8].)

LEMMA 1. Let E be a convex set in \mathbb{R}^N of dimension K < N. Let T be a linear transformation which maps each unit coordinate vector \overline{e}_i , $1 \le i \le N$, in \mathbb{R}^N to $c_i \overline{e}_i$, with $c_i \ge 0$. Let E' = TE. Let W_K be the product of the K smallest c_i and W'_K the product of the K largest c_i . Then

$$W_K \operatorname{vol}_K E \leq \operatorname{vol}_K E' \leq W'_K \operatorname{vol}_K E.$$

One may adapt our lower bound to Vaaler [12] by using a variant of his Lemma 6. Suppose $Q \subseteq \mathbb{R}^N$ has volume 1, is centro-symmetric and has covariance matrix $Cov(Q) = V^2 Id_{N \times N}$. Let $L_j(\bar{x})$, $1 \le j \le N$, be N real linear forms in K variables, $L_j(\bar{x}) = \sum_{k=1}^{K} a_{jk} x_k$, so that $A = (a_{jk})$ is an $N \times K$ matrix, with N > K, N = K + J.

LEMMA 6'. Let M be a positive integer and suppose that

$$M |\det A^T A|^{1/2} \le V^{-J} C_1(J).$$

Then there exist at least M distinct pairs of nonzero lattice points $\pm \bar{v}_m$, $1 \le m \le M$, such that for each m,

$$\bar{l}_m = (L_i(\bar{v}_m)) \in 2Q.$$

With Lemma 6' in place of Lemma 6 of [12] and following [12] otherwise, we have a generalization of that paper's main result. Let $\Lambda_j(\bar{x}) = \sum_{k=1}^{K} a'_{jk} x_k$ for $1 \le j \le J$ be J real linear forms in K real variables x_1, \ldots, x_K . Let N = J + K. Let Q be centro-symmetric and convex with $\operatorname{vol}_N Q = 1$ and $\operatorname{Cov}(Q) = V^2 \operatorname{Id}_{N \times N}$. For $\bar{y} \in \mathbb{R}^K$ let $l(\bar{y}) = (y_1, y_2, \ldots, y_K, \Lambda_1(\bar{y}), \ldots, \Lambda_J(\bar{y})) \in \mathbb{R}^N$.

THEOREM 2. Let M be a positive integer and suppose that

$$M^{2} \prod_{1}^{J} \left(1 + \sum_{1}^{K} |a_{jk}'|^{2} \right) \leq C_{1}(J) V^{-J}.$$

Then there exist M distinct pairs of nonzero lattice points $\pm \bar{v}_m$, $1 \le m \le M$, in \mathbb{Z}^K such that $l(\pm \bar{v}_m) \in 2Q$.

620

REMARK. When Q is taken to be the unit cube we get a weaker version of Theorem 1 in [12] with all α_k and β_j there being 1; our more general lower bound is not as sharp for the cube as that in [11].

2. Proofs. Lemma 6' follows from the proof in [11] of Theorem 2 (which appears in [12] as Lemma 6), but we use our Theorem 1' in place of Theorem 1 of [11].

For the proof of Theorem 1 from Theorem 1' we take the c_i in the statement of Theorem 1 as defining T, and let $Q' = T^{-1}Q$, $P' = T^{-1}P$. Applying Theorem 1' to Q' and then Lemma 1 to the resulting bounds on $\operatorname{vol}_{K}(P \cap Q')$ gives Theorem 1.

It remains to prove Theorem 1'. For the proof we shall need some lemmas about centro-symmetric log concave functions. (A function $f: \mathbb{R}^J \to \mathbb{R}^+ \cup \{0\}$ is log concave if log f is concave.)

LEMMA 2. Suppose $f: \mathbb{R}^{J} \to \mathbb{R}^{+} \cup \{0\}$ satisfies $f(\overline{x}) = f(-\overline{x}), \{\overline{x}: f(\overline{x}) > t\}$ is convex and open for each t, and $\int_{\mathbb{R}^{J}} f(\overline{x}) d^{J}(\overline{x}) = 1$. Suppose further that for all unit $\overline{\theta} \in \mathbb{R}^{J}$,

$$\int_{\mathbf{R}^{J}} (\bar{x} \cdot \bar{\theta})^{2} f(\bar{x}) \, d^{J}(\bar{x}) \leq V^{2}$$

Then

$$f(\bar{0}) \geq V^{-J}(J+2)^{-J/2} \bar{\pi}^{J/2} \Gamma(\frac{1}{2}J+1) = V^{-J} C_1(J).$$

PROOF. Let $h: \mathbb{R}^J \to \mathbb{R}^+ \cup \{0\}$ be constant at $V^{-J}C_1(J)$ for $||\bar{x}|| < R = V(J + 2)^{1/2}$, and 0 for $||\bar{x}|| > R$. Then $\int_{\mathbb{R}^J} h = 1$ and $\int_{\mathbb{R}^J} x_i^2 h = V^2$, so h satisfies the hypotheses of Lemma 2. Thus to prove the lemma it suffices to prove that if $f \neq h, f(\bar{0}) > h(\bar{0})$.

We first show that f can be replaced by an f_1 such that f_1 is circular symmetric, that is, $f_1(\bar{x}) = f_1(\bar{y})$ if $||\bar{x}|| = ||\bar{y}||$, and such that $f_1(\bar{0}) = f(\bar{0})$ and f_1 satisfies the hypotheses of the lemma.

For let $E_t = \{\overline{x}: f(\overline{x}) > t\}$. By hypothesis E_t is convex, and if $t \leq s, E_s \subseteq E_t$. Thus

$$\int_{\mathbf{R}^{J}} f(\bar{x}) = \int_{t=0}^{f(0)} \int_{E_{t}} 1 \, d^{J}(\bar{x}) \, dt, \tag{3}$$

while

$$\int_{\mathbf{R}^{J}} x_{i}^{2} f(\bar{x}) = \int_{t=0}^{f(0)} \int_{E_{t}} x_{i}^{2} d^{J}(\bar{x}) dt.$$
(4)

Let E'_t be the ball about $\overline{0}$ of the same vol_J as E_t , and let $f_1(\overline{x}) = \sup\{t: \overline{x} \in E'_t\}$. Then

$$\int_{\mathbf{R}^{J}} f_{1}(\bar{x}) = \int_{0}^{f(0)} \int_{E_{t}^{'}} 1 \, d^{J}(\bar{x}) \, dt = \int_{0}^{f(0)} \int_{E_{t}} 1 \, d^{J}(\bar{x}) \, dt = \int_{\mathbf{R}^{J}} f(\bar{x}) = 1.$$
(5)

Further,

$$\int_{\mathbf{R}'} x_i^2 f_1(\bar{x}) = J^{-1} \int_{\mathbf{R}'} \|\bar{x}\|^2 f_1(\bar{x}) = J^{-1} \int_0^{f(0)} \int_{E_i'} \|\bar{x}\|^2 d^J(\bar{x}) dt.$$
(6)

DOUGLAS HENSLEY

Now consider a particular value of t. If we show that $\int_{E_t} ||\bar{x}||^2 \leq \int_{E_t} ||\bar{x}||^2$, the claim about f_1 is proved. So let INT = $E_t' \cap E_t$, EX = $E_t \setminus E_t'$ and EX' = $E_t' \setminus E_t$. Then

$$\int_{E_{t}} \|\bar{x}\|^{2} = \int_{\text{INT}} \|\bar{x}\|^{2} + \int_{\text{EX}} \|\bar{x}\|^{2} \ge \int_{\text{INT}} \|\bar{x}\|^{2} + \int_{\text{EX}'} \|\bar{x}\|^{2} = \int_{E_{t}'} \|\bar{x}\|^{2},$$

because $\|\bar{x}\|^2$ is everywhere in EX at least as large as anywhere in EX' and $\operatorname{vol}_{J-1}EX = \operatorname{vol}_{J-1}EX'$. Thus $\int_{\mathbb{R}'} \|\bar{x}\|^2 f_1(\bar{x}) d^J(\bar{x}) \leq \int_{\mathbb{R}'} \|\bar{x}\|^2 f(\bar{x}) d^J(\bar{x})$, and because of the circular symmetry of f_1 , $\int_{\mathbb{R}'} (\bar{x} \cdot \bar{\theta})^2 f_1(\bar{x}) d^J(\bar{x}) \leq V^2$ for all unit vectors $\bar{\theta}$.

Now suppose the lemma is false and $h(\overline{0}) > f(\overline{0}) = f_1(\overline{0})$. Since h and f_1 depend only on $\|\overline{x}\| = r$ we shall by an abuse of language write $h(r), f_1(r)$ for $h(\overline{x}), f_1(\overline{x})$ when $\|\overline{x}\| = r$. (For r < R, h(r) = h(0), as well.) Now

$$\int_{\mathbf{R}^{J}} f_{1}(\bar{x}) d^{J}(\bar{x}) = \int_{0}^{\infty} f_{1}(r) J \sigma_{J} r^{J-1} dr = 1 = \int_{\mathbf{R}^{J}} h(\bar{x}) d^{J}(\bar{x})$$
$$= V^{-J} C_{1}(J) \cdot J \sigma_{J} \int_{0}^{R} r^{J-1} dr.$$

Let $F_1(r) = \int_0^r f_1(u) J \sigma_J u^{J-1} du$ and $H(r) = \int_0^r h(u) J \sigma_J u^{J-1} du$. Since for r < R, $h(0) = h(r) > f_1(r)$ while for r > R, $0 = h(r) < f_1(r)$, we have $H(r) > F_1(r)$ for 0 < r < R, and $H(r) \ge F_1(r)$ in any case. Thus

$$\int_0^\infty 2rF_1(r)\ dr < \int_0^\infty 2rH(r)\ dr$$

and

$$\int_0^\infty r^2 dF_1(r) = \int_0^\infty r^2 f_1(r) J \sigma_J r^{J-1} dr > \int_0^\infty r^2 dH(r) = \int_0^R r^2 h(0) J \sigma_J r^{J-1} dr.$$

In other words,

$$\int_{\mathbf{R}^{J}} \|\bar{x}\|^{2} f_{1}(\bar{x}) \ d^{J}(\bar{x}) > \int_{\mathbf{R}^{J}} \|\bar{x}\|^{2} h(\bar{x}) \ d^{J}(\bar{x}),$$

a contradicition.

REMARK. Log concave centro-symmetric functions which satisfy the covariance hypothesis satisfy the other hypotheses of Lemma 2, as is proved in the preliminary lemma of [2]. Lemma 2 gives a sharp lower bound since an extremal function, h, is found. Our next lemma is not as sharp.

LEMMA 3. Suppose $f: \mathbb{R}^J \to \mathbb{R}^+ \cup \{0\}$ satisfies $f(\bar{x}) = f(-\bar{x})$, is log concave, and $\int_{\mathbb{R}^d} f(\bar{x}) d^J(\bar{x}) = 1$. Suppose further that for all unit $\bar{\theta} \in \mathbb{R}^J$,

$$\int_{\mathbf{R}^J} (\bar{x} \cdot \bar{\theta})^2 f(\bar{x}) \, d^J(\bar{x}) \ge V^2$$

Then $f(\overline{0}) \leq V^{-J}C_2(J)$, where $C_2(J)$ is the same as in Theorem 1.

PROOF. Let $E_1 = \{\bar{x} \in \mathbb{R}^J : f(\bar{x}) > \frac{1}{2}f(\bar{0})\}$. E_1 is convex and centro-symmetric. Let $E_i = iE_1 \setminus (i-1)E_1$ for i > 1, so that \mathbb{R}^J is the disjoint $\bigcup_{i=1}^{\infty} E_i$. Let r be the minimal radius of E_1 , and let $\bar{\theta}$ be a unit vector in the direction of a point on ∂E_1 of norm r.

Since $\int_{\mathbf{R}^{J}} (\bar{x} \cdot \bar{\theta})^2 f(\bar{x}) d^{J}(\bar{x}) \ge V^2$,

$$V^{2} \leq \sum_{i=1}^{\infty} \int_{E_{i}} (\bar{x} \cdot \bar{\theta})^{2} f(\bar{x}) d^{J}(\bar{x}) \leq 4 \sum_{i=1}^{\infty} i^{J+2} 2^{-i} r^{2}$$

because $\operatorname{vol}_{J} E_{1} \leq 2/f(\bar{0})$ and $\int_{E_{1}} (\bar{x} \cdot \bar{\theta})^{2} f(\bar{x}) d^{J}(\bar{x}) \leq (2/f(\bar{0}))r^{2} f(\bar{0}) = 2r^{2}$. Now

$$4\sum_{1}^{\infty} i^{J+2}2^{-i}r^2 \leq 8r^2 \int_0^{\infty} s^{J+2}2^{-s} \, ds = Dr^2 = 8r^2(\log 2)^{-J-3}(J+2)!$$

by the integral comparison test. Thus $r \ge D^{-1/2}V$. On the other hand $2 \ge f(\bar{0})\operatorname{vol}_J(E_1) \ge f(\bar{0})\sigma_J r^J$ so

$$\begin{split} f(\bar{0}) &\leq 2r^{-J}\sigma_{J}^{-1} \leq 2V^{-J}D^{J/2}\sigma_{J}^{-1} \\ &= V^{-J} \cdot 2\big(8(\log 2)^{-J-3}(J+2)!\big)^{J/2}\pi^{-J/2}\Gamma\big(\frac{1}{2}J+1\big) = V^{-J}C_{2}(J). \quad \Box \end{split}$$

In case J = 1 we can find the extremal function and obtain a sharper upper bound.

LEMMA 4. Suppose $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}$ satisfies f(x) = f(-x), is log concave, and $\int_{\mathbb{R}} f(x) dx = 1$, $\int_{\mathbb{R}} x^2 f(x) dx = V^2$. Then $f(0) \ge 2^{-1/2} V^{-1}$.

PROOF. Let $\alpha = f(0)$. Since $\int_{-\infty}^{\infty} e^{-2\alpha|x|} dx = 1$, f(x) cannot be everywhere $\geq \alpha e^{-2\alpha|x|}$. They are equal at 0, so either $f(x) \equiv \alpha e^{-2\alpha|x|}$ or there exists $\beta > 0$ such that for $0 < x < \beta$, $f(x) > \alpha e^{-2\alpha|x|}$ while for $x > \beta$, $f(x) < \alpha e^{-2\alpha|x|}$. (Both are log concave.)

Now let $F(x) = \int_0^x f(t) dt$ and $G(x) = \int_0^x \alpha e^{-2\alpha |t|} d$. Then

$$\int_{-\infty}^{\infty} x^2 (f(x) - \alpha e^{-2\alpha |x|}) dx = 2 \int_0^{\infty} x^2 (f(x) - \alpha e^{-2\alpha x}) dx$$
$$= 4 \int_0^{\infty} x (G(x) - F(x)) dx$$

since $x^2(F - G)$ declines exponentially to zero at $\pm \infty$. Since F(0) = G(0) = 0 and $F(\infty) = G(\infty) = \frac{1}{2}$, and since d(F - G)/dx > 0 only for $0 < x < \beta$, x(G(x) - F(x)) is always negative and $\int_{-\infty}^{\infty} x^2(f(x) - \alpha e^{-2\alpha|x|}) dx < 0$. \Box

What does all this have to do with $\operatorname{vol}_{K}(P \cap Q)$? Let K_{J} denote the unit cube $|x_{i}| \leq \frac{1}{2}, K < i \leq N$. Let B denote the null matrix of P, so that B has N columns and J rows, and $B\overline{x} = \overline{0}$ if $\overline{x} \in P$. Without loss of generality we may assume $\operatorname{rank}(B) = J$. Let $B_{e} = [B|e \operatorname{Id}_{J \times J}]$, and let P_{e} be the null space of B_{e} . Then

$$\lim_{\epsilon \to 0} \operatorname{vol}_{N}(P_{\epsilon} \cap (Q \times K_{J})) = \operatorname{vol}_{K}(P \cap Q),$$
(7)

and

$$\operatorname{vol}_N(P_{\epsilon} \cap (Q \times K_J)) = \operatorname{vol}_N\{\overline{z} : B_{\epsilon}\overline{z} = 0 \text{ and } \overline{z} \in Q \times K_J\}.$$
 (8)

We wish to compare the volume in (8) to its projection onto the first N coordinates, $\operatorname{vol}_N(\{\bar{x} \in Q: B\bar{x} \in \varepsilon K_J\})$. This ratio is $\varepsilon^{-J}(\det B_{\varepsilon}B_{\varepsilon}^T)^{1/2}$, which we now prove.

We shall need a lemma about how areas are affected by projection. If $\bar{a}_1 \dots \bar{a}_N$ are column vectors in \mathbf{R}^{N+J} , if $A = [\bar{a}_1 \bar{a}_2 \dots \bar{a}_N]^T$ is a matrix of N + J columns

and N rows, and $\text{Box}_{A} = \{\bar{a}: \bar{a} = \sum_{i=1}^{N} \lambda_{i} \bar{a}_{i}, 0 < \lambda_{i} < 1\}$ then $\text{vol}_{N} \text{Box}_{A} = (\det AA^{T})^{1/2}$ (Eves [3]).

Now suppose A has the form $[Id_{N \times N}| - D]$ and let $A' = [D^T | Id_{J \times J}]$.

LEMMA 5. $Det(AA^T) = Det(A'A'^T)$.

PROOF. By the Cauchy-Binet theorem, $Det(AA^T) = \sum_{\alpha} (\det \alpha)^2$ where the summation is over all $N \times N$ minors α of A [5]. Now a typical α consists of l columns of $Id_{N \times N}$ and m columns of D, $l \leq N$, $m \leq J$, l + m = N.

$$\alpha = \left(\bar{e}_{\alpha_1}\bar{e}_{\alpha_2}\cdots \bar{e}_{\alpha_l}-\overline{D}_{\alpha_{l+l}}-\overline{D}_{\alpha_{2+l}}-\cdots -\overline{D}_{\alpha_{m+l}}\right).$$

Expanding det α about the 1st through *l*th columns, each of which contain 1 once and otherwise zeros, we have $Det(\alpha) = \pm Det(\beta)$ where β is the square matrix consisting of the intersection of the N - l rows not indexed by $\alpha_1, \alpha_2 \dots \alpha_l$ and the *m* columns of -D belonging to α . Thus $det(AA^T) = 1 + \sum_{\beta} (det \beta)^2$, the sum taken over all $m \times m$ minors of $D, m \leq J$. But $Det(A'A'^T) = \sum_{\gamma} (det \gamma)^2$, sum over $J \times J$ minors γ of A', and these may be expanded about the columns of $Id_{J \times J}$ to obtain again $1 + \sum_{\beta} (det \beta)^2$. \Box

Now let $\overline{b_i}$, $1 \le i \le N$, denote the column vectors of B. Let

$$\bar{a}_i = \left[\frac{\bar{e}_i}{-\varepsilon^{-1}\bar{b}_i} \right] \text{ and } A^T = \left[\bar{a}_1 \bar{a}_2 \dots \bar{a}_N \right].$$

Then $B_e A^T = (0_{J \times N})$ so that the \bar{a}_i are vectors in Null (B_e) . When these \bar{a}_i are projected onto their first N coordinates they are $\bar{e}_1, \bar{e}_2 \dots \bar{e}_N$. Therefore they are linearly independent and form a basis of Null $(B_e) = P_e$.

Now $\operatorname{vol}_N \operatorname{Box}_A = (\det AA^T)^{1/2}$ while $\operatorname{vol}_N \operatorname{Proj}(\operatorname{Box}_A) = 1$ as $\overline{e}_1 \dots \overline{e}_N$ are orthonormal. The ratio of volumes, $(\det AA^T)^{1/2}$, is independent of which measurable set is projected.

Now A has the form $A = [Id_{N \times N}| - D]$ with $D = e^{-1}B^T$, so that $A' = [e^{-1}B|Id_{J \times J}]$. Thus

$$(\det AA^{T})^{1/2} = (\det A'A'^{T})^{1/2}$$
 by Lemma 5
= $\varepsilon^{-J}(\det B_{z}B_{z}^{T})^{1/2}$,

and this is the ratio of a volume in P_e to the volume of its projection onto the first N coordinates, as claimed.

Since we can find $\operatorname{vol}_N(P_{\epsilon} \cap (Q \times K_J))$ from $\operatorname{vol}_N\{\overline{x} \in Q: B\overline{x} \in \epsilon K_J\}$, we turn our attention to this last. It may be regarded as the probability that an \overline{x} taken "at random" from Q (the probability measure being Lebesgue measure restricted to Q) will satisfy $B\overline{x} \in \epsilon K_J$. Let $f(\overline{x})$ denote the probability density function of $B\overline{x}$. Since Q is convex, $f(\overline{x})$ is log concave. (This is the key observation.)

For let μ denote the probability measure associated with f, and ν Lebesgue measure restricted to Q. Let s = 1 - t, $0 \le t \le 1$, and let C, D be open convex sets in \mathbb{R}^{J} . Let $B^{-1}C$, $B^{-1}D$ be the inverse images in \mathbb{R}^{N} under B of C and D respectively. From Prekópa [9], since χ_Q , the characteristic function of Q, is log concave, the measure ν is log concave, that is, $\nu(sC' + tD') \ge (\nu(C'))^{s}(\nu(D'))^{t}$. Let

$$C' = B^{-1}D, D' = B^{-1}D.$$
 Then

$$\mu(sC + tD) = \nu(B^{-1}(sC + tD)) = \nu(sB^{-1}C + tB^{-1}D) \quad \text{(since } B \text{ is linear)}$$

$$= \nu(sC' + tD') > (\nu(C'))^{s}(\nu(D'))^{t} = (\mu(C))^{s}(\mu(D))^{t}.$$

So μ is a log concave measure and, again by Prekópa [9], f is a log concave function. Now as $\epsilon \to 0$,

$$\operatorname{Prob}(B\bar{x} \in \varepsilon K_J) \sim \varepsilon' f(\bar{0}). \tag{9}$$

Also,

$$\operatorname{Cov}(f)_{ij} = \int_{\mathbf{R}^J} x_i x_j f(\bar{x}) \, d^J(\bar{x}) = (V^2 B B^T)_{ij}.$$
 (10)

Let \overline{X} be the random vector uniformly distributed on Q. Since BB^T is selfadjoint and positive definite (rank B = J), there is a square matrix S such that $SS^T = BB^T$ [1].

Let Y be the random vector $\overline{Y} = S^{-1}B\overline{X}$. Then $Cov(B\overline{X}) = V^2BB^T$, so $Cov(\overline{Y}) = V^2S^{-1}BB^TS^{-1T} = V^2Id_{J\times J}$, since for any random vector \overline{Z} , any square matrix U, $Cov(U\overline{Z}) = E(U\overline{Z}(U\overline{Z})^T) = E(U\overline{Z}\overline{Z}^TU^T) = UE(\overline{Z}\overline{Z}^T)U^T = U Cov(\overline{Z})U^T$ because expectation (E) is linear.

Let $h(\bar{x})$ be the probability density function associated with \bar{Y} . Then

$$h(\bar{0}) = (\det BB^T)^{1/2} f(\bar{0}), \tag{11}$$

$$\operatorname{Cov}(h) = \operatorname{Cov}(\overline{Y}) = V^{2} \operatorname{Id}_{J \times J}, \tag{12}$$

and since log concavity is preserved under the linear transformation S^{-1} , h is log concave.

Applying Lemmas 2 and 3 to h, and Lemma 4 in case J = 1, we have from (12) that

$$C_1(J)V^{-J} \le h(\bar{0}) \le C_2(J)V^{-J}$$
 (13)

and from (7) through (11) that

$$C_1(J)V^{-J} \leq \operatorname{vol}_K(P \cap Q) \leq C_2(J)V^{-J}. \square$$

BIBLIOGRAPHY

1. L. Breiman, Probability, Addison-Wesley, Reading, Mass., 1968, p. 239.

2. Ju. S. Davidovic, B. I. Korenbljum and B. I. Hacet, A property of logarithmically concave functions, Dokl. Akad. Nauk SSSR 85 (1969) = Soviet Math. Dokl. 10 (1969), 477-480.

3. H. Eves, Elementary matrix theory, Allyn and Bacon, Boston, Mass., 1966, p. 176.

4. W. Fleming, Functions of several variables, Springer-Verlag, New York, 1977.

5. F. Gantmacher, Matrizenrechnung, Vol. 1, Deutsche Verlag der Wissenschaften, Berlin, 1970.

6. D. Hensley, Slicing the cube in Rⁿ and probability, Proc. Amer. Math. Soc. 73 (1979), 95-100.

7. M. Kanter, Unimodality and dominance for symmetric random vectors, Trans. Amer. Math. Soc. 229 (1977), 65-85.

8. M. Marcus and H. Minc, Introduction to linear algebra, Macmillan, New York, 1965, p. 209.

9. A. Prekópa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1973), 335-343.

10. Y. Rinnot, On convexity of measures, Ann. Probability 4 (1976), 1020-1026.

11. J. Vaaler, A geometric inequality with applications to geometry of numbers, Pacific J. Math. (to appear).

12. ____, On linear forms and Diophantine approximation, Pacific J. Math. (to appear).

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843