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ON CONJUGACY CLASSES OF ELEMENTS OF FINITE ORDER

IN COMPACT OR COMPLEX SEMISIMPLE LIE GROUPS

DRAGOMIR Z. DJOKOVIC1

Abstract. If A' is a connected compact Lie group with simple Lie algebra and if k

is an integer relatively prime to the order of the Weyl group W ol K then the

number v{K, k) of conjugacy classes of K consisting of elements x satisfying

xk = 1 is given by

■n-    m, ■+ k
v(K,k)= II   -f—-r,

where / is the rank of K and m,, . . ., m, are the exponents of W. If G is the

complexification of K then we have v(G, k) = v(K, k) without any restriction on k.

Results and proofs. If G is a group and k a positive integer we write G(k) =

{x E G|x* = 1}. We denote by v(G, k) the number of conjugacy classes of G

contained in G(k). (In our cases v(G, k) will be finite.)

Lemma 1. Let Z, be a finite subgroup of the center of G. If k and |Z,| are relatively

prime then the canonical map G —* G/Zx induces a bijection G(k) -» (G/Zx\k) and

v(G, k) = v(G/Zx, k).

Proof. Let x,y G G(k) and assume that xZ, = yZx. Then y = xz for some

z G Z,. Hence 1 = yk = (xz)k = zk. Since k and |Z,| are relatively prime, we have

z = 1, and sox = v.

Now let x E G be such that xZ, E (G/Zx)(k), i.e., x* E Z,. Since k and |Z,|

are relatively prime, there exists z G Z, such that xk = zk. Then_y = xz~x E G(k)

and yZ, = xZ,. Thus we have shown that G(k)-^(G/Zx)(k) is a bijection. The

second assertion now follows immediately.

From now on let G be a connected complex semisimple Lie group, g its Lie

algebra, / the rank of g, h its Cartan subalgebra, 77 the corresponding Cartan

subgroup of G, N the normalizer of 77 in G, and W = N/H the Weyl group of

(g, h). By P we denote the group of weights of (g, h) and by Q the subgroup of P

of radical weights. Both P and Q are free abelian groups of rank /, and Q is

generated by the root system 2 of ( g, h). The group 77 is an algebraic torus, i.e., 77

is isomorphic to the product of / copies of the group C* of nonzero complex

numbers. The exponential map exp^: h —* 77 is a surjective homomorphism. The
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kernel LG of the homomorphism/: h-*H defined by f(X) = e.\\r> h(2ttíX) is also a

free abelian group of rank / which is generated by a basis of h (considered as a

complex vector space). Let PG be the subgroup of the dual space h* consisting of

the elements a such that a(X) is an integer for all X E LG. Then we have

Q c PG C P. We fix a positive integer k. The Weyl group W acts on h and h* and

PG is stable under this action. Hence W also acts on the finite abelian group

PG/kPG. (Note that this abelian group is a direct product of / cyclic groups of

order k.) We recall also that the order e of P/Q is called the connection index of g

(or W).

Our first result is the following.

Theorem 2. Let K be a maximal compact subgroup of G. Then v(G, k) = v(K, k)

and this number is also equal to the number of orbits of W in PG/kPG.

Proof. Let T be the (unique) maximal compact subgroup of H. Since all

maximal compact subgroups of G are conjugate in G we may assume that T c K.

Then T is a maximal torus of K. Every x E G(k) is conjugate to some v G K. Since

K is connected, y is conjugate in K to some element of T. Hence every conjugacy

class of G which is contained in G(k) meets H(k). On the other hand two elements

of H are conjugate in G iff they belong to the same orbit of W in H. This shows

that the inclusion map H(k) -» G(k) induces a bijection from the set of W-orbits in

H(k) to the set of G-conjugacy classes contained in G(k). Similarly, the inclusion

map H(k) = T(k) —> K(k) induces a bijection from the set of JF-orbits in H(k) to

the set of 7i~-conjugacy classes contained in K(k). In particular, we have v(G, K) =

v(K, k).

The epimorphism f:h—*H induces a bijection between the set of W-orbits in

(k~xLG)/LG and the set of PF-orbits in H(k). Finally, by duality, the number of

IF-orbits in (k~xLG)/LG is equal to the number of IF-orbits in PG/kPG. This

completes the proof.

Now let us assume that k and | W\ are relatively prime. Let Z be the center of G.

Then it is easy to check that every prime divisor of \Z\ also divides \W\. Hence k

and \Z\ are also relatively prime. By Lemma 1 we have then v(G, k) = v(G/Z, k).

Thus we may assume that G is the adjoint group. Then G is a product of simple

complex Lie groups G„ . . ., Gr. Consequently we have
r

v(G, k) = II KG,, k).
I» 1

This reduces the problem of computing v(G, k) to the case when G is a simple

complex Lie group (with trivial center). In that case the answer is given in the

following theorem.

Theorem 3. Assume that G is the adjoint group, g is simple, and that k and W are

relatively prime. Then we have

tt    m¡ + k

where mx, . . ., m, are the exponents of W. (See [1, p. 118].)
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Proof. In this case we have PG = Q. By Theorem 2, v(G, k) is equal to the

number of orbits of W in Q/kQ.

For each root a G 2 let sa G W be the corresponding reflection. A root system

2, c 2 is closed in 2 if a, ß G 2, and a + ß G 2 imply that a + ß G 2,. A

subgroup Wx c W is called a Weyl subgroup if there exists a closed subsystem

2, c 2 such that Wx is generated by the reflections sa for all a G 2,. Then the set

of all a G 2 such that sa G Wx is a closed subsystem containing 2,. Hence without

loss of generality we may assume that 2, = (a E 2|sa E Wx).

Fix w G W and let Wx be a minimal Weyl subgroup of W containing w. Define

2, as above and let

2, = 2„U • • • U2,r

be the decomposition of 2, into irreducible root systems. Then the real vector

subspace of h* spanned by 2, admits a direct decomposition

vx « vn + • - • + VXr,

where Vu is spanned by 2,,. This leads to the corresponding direct decomposition

of the group Wx :

wx = wxxx- ■■ x wXr,

where WXi is generated by the reflections sa for a G 2,,. Let w = wx . . . wr be the

corresponding decomposition of the element w. By minimality of Wx, the element

w¡ G WXi (i = 1, . . . , r) is not contained in any proper Weyl subgroup of WXi. By

[4, Corollary 8.3] we have det(w, - 1) = ± e¡ where e¡ is the connection index of

WXi, and w¡ is considered as'acting in VXi. Hence

dct(w\y¡-l)= ±ex- ■ ■ er.

Since e, divides \WXi\, and the latter divides \W\, it follows that k and the above

determinant are relatively prime.

Let m be the multiplicity of the eigenvalue 1 of w. Thus dim Vx = I - m. By [2,

Theorem III. 12, p. 50] there exists a basis of Q with respect to which the matrix of

w is an integral / by / matrix of the form

(Í   c)
where A is an upper triangular m by m matrix with ones on the diagonal. Since w

has finite order, A must be the identity matrix. Since

det(C- 7) = det(w|K, " 0>

the matrix C - 7 is invertible when considered as a matrix over the residue ring

T/kZ. Consequently, the number of elements of Q/kQ fixed by w is equal to km.

Let gm be the number of elements w G W such that 1 is an eigenvalue of w of

multiplicity m. By a theorem of Solomon [3] we have the identity

(m, + t) ■ ■ ■ (m, + t) = g0 + gxt+ ■ ■ ■ +g,t'.
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Hence | W\ = (mx + 1) . . . (m, + 1) and the number of orbits of W in Q/kQ is

equal to

1       ' -L  m¡ + k
2 gmkm = n

This completes the proof of the theorem.

Remarks. 1. The equality v(G, k) = v(K, k) from Theorem 1 is in fact valid for

any compact Lie group K (not necessarily semisimple nor connected) and its

complexification G.

2. If v(G, d) is known for all divisors d of k then by using Inclusion-Exclusion

Principle one can easily compute the number of conjugacy classes of G consisting

of elements of order k.
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