MAD FAMILIES AND ULTRAFILTERS

MARTIN WEESE¹

ABSTRACT. For each almost disjoint family X let $F(X) = \{a \subseteq \omega : \text{card } \{s \in X : s \setminus a \text{ is finite}\} = 2^{\omega}\}$, $I(X) = \{a \subseteq \omega : \text{card } \{s \in X : \text{card } (s \cap a) = \omega\} = 2^{\omega}\}$. Assuming $P(2^{\omega})$ we show that for each nonprincipal ultrafilter p there exist a maximal almost disjoint family X and an almost disjoint family Y with F(X) = I(Y) = p.

1. Introduction. We refer the reader to [2] for unexplained notions. Let A be a set; $\mathfrak{P}(A)$ denotes the power set of A and card A denotes the cardinality of A. Fin denotes the set of finite subsets of ω . For $a, b \in \mathfrak{P}(A)$ we write $a \subseteq {}_{*}b$ if $a \setminus b$ is finite and we write $a = {}_{*}b$ if $a \subseteq {}_{*}b$ and $b \subseteq {}_{*}a$.

Let $X \subseteq \mathcal{P}(\omega) \setminus \text{Fin. } X$ has the fip (finite intersection property) if for any finite subset S of X, $\cap S$ is infinite. X is almost disjoint if (i) for $a, b \in X$ with $a \neq b$, $a \cap b \in \text{Fin and (ii)}$ for any finite subset S of X, $\omega \setminus \bigcup S$ is infinite. X is called mad family if it is a maximal almost disjoint family and X is called ad family if it is an almost disjoint family.

Let $P(2^{\omega})$ be the following proposition (considered by Rothberger [5]):

If $F \subseteq \mathcal{P}(\omega)$ has the fip and card $F < 2^{\omega}$ then there is $d \in \mathcal{P}(\omega) \setminus \text{Fin}$ with $a \subseteq {}_{\bullet}b$ for each $b \in F$.

The proposition $P(2^{\omega})$ is weaker than Martin's axiom (see [4]). For X an ad family we set

$$F(X) = \left\{ a \subseteq \omega : \operatorname{card} \left\{ s \in X : s \subseteq {}_{*}a \right\} = 2^{\omega} \right\};$$

$$I(X) = \left\{ a \subseteq \omega : \operatorname{card} \left\{ s \in X : \operatorname{card} (s \cap a) = \omega \right\} = 2^{\omega} \right\}.$$

Then for each ad family X, $F(X) \subseteq I(X)$; for X a mad family, $I(X) = \{a \subseteq \omega : \text{ for each finite subset } S \text{ of } X, \operatorname{card}(a \setminus \bigcup S) = \omega \}$. We show:

THEOREM 1. Assume $P(2^{\omega})$. Then for any nonprincipal ultrafilter p on ω there exists a mad family X with F(X) = p.

THEOREM 2. Assume $P(2^{\omega})$. Then for any nonprincipal ultrafilter p on ω there exists an ad family X with I(X) = p.

Received by the editors August 11, 1978 and, in revised form, July 16, 1979.

AMS (MOS) subject classifications (1970). Primary 02K05; Secondary 06A40, 54A25, 54D35.

Key words and phrases. Almost disjoint family, Stone-Cech compactification, 2^{ω} -point, superatomic Boolean algebra.

¹The author wishes to thank the referee and J. E. Baumgartner for many valuable remarks.

- **2. Proof of Theorems 1 and 2.** Let p be any nonprincipal ultrafilter on ω , let $\{a_i: i < 2^{\omega}\}$ be an enumeration of p such that for each $b \in p$ we have $\operatorname{card}\{i < 2^{\omega}: b = a_i\} = 2^{\omega}$ and let $\{b_i: i < 2^{\omega}\}$ be an enumeration of $\{b \subseteq \omega: b \notin p, \operatorname{card} b = \omega\}$. Let $A_k = \{a_i: i < k\}$, $B_k = \{b_i: i < k\}$. We construct increasing sequences $\{X_i: i < 2^{\omega}\}$, $\{Y_i: i < 2^{\omega}\}$ of almost disjoint sets such that for each $i < 2^{\omega}$:
 - (i) card $X_i < 2^{\omega}$ and card $Y_i < 2^{\omega}$;
 - (ii) $(X_i \cup Y_i) \cap p = \emptyset$;
 - (iii) $X_i \cap Y_i = \emptyset$;
 - (iv) there is $c \in X_{i+1} \setminus X_i$ with $c \subseteq a_i$;
 - (v) there is $d \in Y_{i+1}$ with $card(d \cap b_i) = \omega$;
 - (vi) for $i < k < 2^{\omega}$, if $c \in X_k \setminus X_i$, then $\operatorname{card}(c \cap b_i) < \omega$;
 - (vii) for $i < k < 2^{\omega}$, if $d \in Y_k \setminus Y_i$, then $card(d \cap b_i) = \omega$.

Let $X = \bigcup \{X_i : i < 2^{\omega}\}$, $Y = \bigcup \{Y_i : i < 2^{\omega}\}$. Then X is an ad family and (v) implies that $X \cup Y$ is a mad family. (iv) implies that for each $a \in p$, $a \in F(X)$ and $a \in F(X \cup Y)$. (vi) implies that for each $a \subseteq \omega$ with $a \notin p$, $a \notin I(X)$. (vii) implies that for each $a \subseteq \omega$ with $a \notin p$, $a \notin F(X \cup Y)$. Thus $I(X) = F(X \cup Y) = p$.

Now we describe the construction of the X_i and Y_i . We set $X_0 = Y_0 = \emptyset$. Assume $i < 2^{\omega}$ and for each k < i, X_k and Y_k are constructed. For i a limit ordinal we set $X_i = \bigcup \{X_k : k < i\}, Y_i = \bigcup \{Y_k : k < i\}$.

Now let i be a successor ordinal, i = k + 1. Let $S = A_i \cup \{\omega \setminus b : b \in B_i\} \cup \{\omega \setminus x : x \in X_k\}$. Then S has the fip and card $S < 2^\omega$. $P(2^\omega)$ implies that there is $a \subseteq \omega$ with $a \setminus s \in F$ in for each $s \in S$. Let $a^* \subseteq a \cap a_i$ be such that $a^* \notin p$ and card $a^* = \omega$. Then we set $X_i = X_k \cup \{a^*\}$. Assume there is $s \in X_i \cup Y_k$ with card $(s \cap b_i) = \omega$. Then we set $Y_i = Y_k$. Assume now that no such s exists. Let $T = A_i \cup \{\omega \setminus b : b \in B_i\} \cup \{\omega \setminus x : x \in X_i\}$. Then T has the fip and card $T < 2^\omega$. $P(2^\omega)$ implies that there is $c \subseteq \omega$ with $c \setminus s \in F$ in for each $s \in T$. Let $c^* \subseteq c \cap a_i$ be such that $c^* \notin p$ and card $c^* = \omega$. Then we set $Y_i = Y_k \cup \{c^* \cup b_i\}$. It is now easy to see that (i)–(vii) are satisfied.

3. Topological consequences. Let N be the discrete countable space and let βN be the Stone-Čech compactification of N. Then $\beta N \setminus N$ can be represented by the set of all nonprincipal ultrafilters over ω and the topology generated by the following basis \mathfrak{A} : For each $a \subseteq \omega$ let $\hat{a} = \{ p \in \beta N \setminus N : a \in p \}$ and $\mathfrak{A} = \{ \hat{a} : a \subseteq \omega \}$. Then $\hat{a} \supseteq \hat{b}$ iff $b \subseteq a$. Then Theorems 1 and 2 can be reformulated as follows:

THEOREM 1'. Assume $P(2^{\omega})$. Then for each $p \in \beta N \setminus N$ there is a dense system \mathfrak{U}_p of open sets such that for each $a \subseteq \omega$, $a \in p$ iff $\operatorname{card}\{U \in \mathfrak{U}_p \colon U \subseteq \hat{a}\} = 2^{\omega}$.

THEOREM 2'. Assume $P(2^{\omega})$. Then for each $p \in \beta N \setminus N$ there is a system \mathfrak{U}_p of open sets such that for each $a \subseteq \omega$, $a \in p$ iff $\operatorname{card}\{U \in \mathfrak{U}_n \colon U \cap \hat{a} \neq \emptyset\} = 2^{\omega}$.

 $p \in \beta N \setminus N$ is a 2^{ω} -point if there is a family $\{U_i: i < 2^{\omega}\}$ of pairwise disjoint open sets with $p \in (\operatorname{cl}_{\beta N} U_i) \setminus N$. We can use Theorem 1 to derive the following theorem of Hindman [3] (Hindman used CH but there is little difficulty adapting his proof to $P(2^{\omega})$):

THEOREM 3. Assume $P(2^{\omega})$. Then each $p \in \beta N \setminus N$ is a 2^{ω} -point.

PROOF. Let $X = \{c_i : i < 2^{\omega}\}$ be a mad family with F(X) = p. For each $i < 2^{\omega}$ choose an ad family $\{d_{ik} : k < 2^{\omega}\}$ with $d_{ik} \subseteq c_i$ for each $k < 2^{\omega}$. For $k < 2^{\omega}$ let

$$U_k = \bigcup \big\{ \hat{d}_{ik} \colon i < 2^\omega \big\}.$$

Then the U_k are pairwise disjoint open sets and p is in the closure of each U_k .

REMARK. Balcar and Vojtáš [1] proved Theorem 3 without any set-theoretical assumption. It is also unknown whether Theorem 1 holds without any set-theoretical assumption.

4. Applications to superatomic Boolean algebras. Let \mathfrak{A} be a Boolean algebra. $a \in |\mathfrak{A}|$ is an atom if $a \neq 0$ and for each $b \in |\mathfrak{A}|$, $a \cap b = a$ or $a \cap b = 0$. \mathfrak{A} is atomic if for each $b \in |\mathfrak{A}|$ there is an atom a with $a \leq b$. \mathfrak{A} is superatomic if each homomorphic image of \mathfrak{A} is atomic. $\underline{2}$ denotes the two-element Boolean algebra, Pow(ω) denotes the power set Boolean algebra over ω . For $A \subseteq \text{Pow}(\omega)$ let Pow(ω)[A] denote the subalgebra of Pow(ω) generated by $A \cup \omega$. For each Boolean algebra \mathfrak{A} , $\mathfrak{A}^{(1)}$ denotes \mathfrak{A} factorized by the ideal generated by the atoms and for each $k \in \omega$ we set $\mathfrak{A}^{(k+1)} = (\mathfrak{A}^{(k)})^{(1)}$. If K is a mad family then Pow(ω)[K] is a superatomic Boolean algebra whose set of atoms is ω and $(\text{Pow}(\omega)[X])^{(2)} \cong \underline{2}$.

THEOREM 4. Assume $P(2^{\omega})$. Then there are $2^{2^{\omega}}$ nonisomorphic superatomic Boolean algebras $\mathfrak A$ whose set of atoms is ω and with $\mathfrak A^{(2)} \cong 2$.

PROOF. Let \mathfrak{X} be the class of all mad families X such that F(X) is a nonprincipal ultrafilter. Let $X, Y \in \mathfrak{X}$. X and Y ar called equivalent if there are $a \in X$, $b \in Y$ and a one-one function f from a onto b such that for each $s \in X$ with $s \subseteq {}_{\star}a$ there is $t \in Y$ with $f[s] = {}_{\star}t$. That means, X and Y are equivalent iff F(X) and F(Y) are equivalent with respect to the Rudin-Keisler order of ultrafilters. Now there are $2^{2^{\omega}}$ nonprincipal ultrafilters on ω and each equivalence class with respect to the Rudin-Keisler order contains 2^{ω} ultrafilters. Let $\mathfrak{F} \subseteq \mathfrak{X}$ be such that card $\mathfrak{F} = 2^{2^{\omega}}$ and the elements of \mathfrak{F} are pairwise nonequivalent. Let

$$\Re = \{ \operatorname{Pow}(\omega) [X] : X \in \Im \}.$$

Then \Re is the desired class of superatomic Boolean algebras.

ADDED IN PROOF. As I was informed by Baumgartner, it is impossible to prove Theorem 1 without any set-theoretical assumption.

REFERENCES

- 1. B. Balcar and P. Vojtás, Almost disjoint refinement of families of subsets of N (preprint).
- 2. W. Comfort and S. Negrepontis, *The theory of ultrafilters*, Springer-Verlag, Berlin and New York, 1974.
 - 3. N. Hindman, On the existence of τ -points in $\beta N \setminus N$, Proc. Amer. Math. Soc. 21 (1969), 277–280.
- 4. K. Kunen and F. D. Tall, Between Martin's axiom and Souslin's hypothesis, Fund. Math. 102 (1979), 173-181.
 - 5. F. Rothberger, On some problems of Hausdorff and of Sierpiński, Fund. Math. 35 (1948), 29-46.

HUMBOLDT-UNIVERSITÄT ZU BERLIN, UNTER DEN LINDEN 6, 108 BERLIN, GERMAN DEMOCRATIC REPUBLIC