MAD FAMILIES AND ULTRAFILTERS

MARTIN WEESE ${ }^{1}$

Abstract

For each almost disjoint family X let $F(X)=\{a \subsetneq \omega$: card $\{s \in X$: $s \backslash a$ is finite $\left.\}=2^{\omega}\right\}, I(X)=\left\{a \subseteq \omega\right.$: card $\{s \in X$: card $\left.(s \cap a)=\omega\}=2^{\omega}\right\}$. Assuming $P\left(2^{\omega}\right)$ we show that for each nonprincipal ultrafilter p there exist a maximal almost disjoint family X and an almost disjoint family Y with $F(X)=$ $I(Y)=p$.

1. Introduction. We refer the reader to [2] for unexplained notions. Let A be a set; $\mathscr{P}(A)$ denotes the power set of A and card A denotes the cardinality of A. Fin denotes the set of finite subsets of ω. For $a, b \in \mathscr{P}(A)$ we write $a \subseteq{ }_{*} b$ if $a \backslash b$ is finite and we write $a={ }_{*} b$ if $a \subseteq{ }_{*} b$ and $b \subseteq{ }_{*} a$.

Let $X \subseteq \mathscr{P}(\omega) \backslash$ Fin. X has the fip (finite intersection property) if for any finite subset S of $X, \cap S$ is infinite. X is almost disjoint if (i) for $a, b \in X$ with $a \neq b$, $a \cap b \in$ Fin and (ii) for any finite subset S of $X, \omega \backslash \cup S$ is infinite. X is called mad family if it is a maximal almost disjoint family and X is called ad family if it is an almost disjoint family.

Let $P\left(2^{\omega}\right)$ be the following proposition (considered by Rothberger [5]):
If $F \subseteq \mathscr{P}(\omega)$ has the fip and card $F<2^{\omega}$ then there is $d \in \mathscr{P}(\omega) \backslash$ Fin with $a \subseteq{ }_{*} b$ for each $b \in F$.

The proposition $P\left(2^{\omega}\right)$ is weaker than Martin's axiom (see [4]).
For X an ad family we set

$$
\begin{aligned}
F(X) & =\left\{a \subseteq \omega: \operatorname{card}\left\{s \in X: s \subseteq{ }_{*} a\right\}=2^{\omega}\right\} \\
I(X) & =\left\{a \subseteq \omega: \operatorname{card}\{s \in X: \operatorname{card}(s \cap a)=\omega\}=2^{\omega}\right\}
\end{aligned}
$$

Then for each ad family $X, F(X) \subseteq I(X)$; for X a mad family, $I(X)=\{a \subseteq \omega$: for each finite subset S of $X, \operatorname{card}(a \backslash \cup S)=\omega\}$. We show:

Theorem 1. Assume $P\left(2^{\omega}\right)$. Then for any nonprincipal ultrafilter p on ω there exists a mad family X with $F(X)=p$.

Theorem 2. Assume $P\left(2^{\omega}\right)$. Then for any nonprincipal ultrafilter p on ω there exists an ad family X with $I(X)=p$.

[^0]2. Proof of Theorems 1 and 2. Let p be any nonprincipal ultrafilter on ω, let $\left\{a_{i}: i<2^{\omega}\right\}$ be an enumeration of p such that for each $b \in p$ we have $\operatorname{card}\left\{i<2^{\omega}: b=a_{i}\right\}=2^{\omega}$ and let $\left\{b_{i}: i<2^{\omega}\right\}$ be an enumeration of $\{b \subseteq \omega$: $b \notin p$, card $b=\omega\}$. Let $A_{k}=\left\{a_{i}: i<k\right\}, B_{k}=\left\{b_{i}: i<k\right\}$. We construct increasing sequences $\left\{X_{i}: i<2^{\omega}\right\},\left\{Y_{i}: i<2^{\omega}\right\}$ of almost disjoint sets such that for each $i<2^{\omega}$:
(i) card $X_{i}<2^{\omega}$ and card $Y_{i}<2^{\omega}$;
(ii) $\left(X_{i} \cup Y_{i}\right) \cap p=\varnothing$;
(iii) $X_{i} \cap Y_{i}=\varnothing$;
(iv) there is $c \in X_{i+1} \backslash X_{i}$ with $c \subseteq a_{i}$;
(v) there is $d \in Y_{i+1}$ with $\operatorname{card}\left(d \cap b_{i}\right)=\omega$;
(vi) for $i<k<2^{\omega}$, if $c \in X_{k} \backslash X_{i}$, then $\operatorname{card}\left(c \cap b_{i}\right)<\omega$;
(vii) for $i<k<2^{\omega}$, if $d \in Y_{k} \backslash Y_{i}$, then $\operatorname{card}\left(d \cap b_{i}\right)=\omega$.

Let $X=\cup\left\{X_{i}: i<2^{\omega}\right\}, Y=\cup\left\{Y_{i}: i<2^{\omega}\right\}$. Then X is an ad family and (v) implies that $X \cup Y$ is a mad family. (iv) implies that for each $a \in p, a \in F(X)$ and $a \in F(X \cup Y)$. (vi) implies that for each $a \subseteq \omega$ with $a \notin p, a \notin I(X)$. (vii) implies that for each $a \subseteq \omega$ with $a \notin p, a \notin F(X \cup Y)$. Thus $I(X)=F(X \cup Y)=p$.

Now we describe the construction of the X_{i} and Y_{i}. We set $X_{0}=Y_{0}=\varnothing$. Assume $i<2^{\omega}$ and for each $k<i, X_{k}$ and Y_{k} are constructed. For i a limit ordinal we set $X_{i}=\cup\left\{X_{k}: k<i\right\}, Y_{i}=\cup\left\{Y_{k}: k<i\right\}$.

Now let i be a successor ordinal, $i=k+1$. Let $S=A_{i} \cup\left\{\omega \backslash b: b \in B_{i}\right\} \cup$ $\left\{\omega \backslash x: x \in X_{k}\right\}$. Then S has the fip and card $S<2^{\omega} . P\left(2^{\omega}\right)$ implies that there is $a \subseteq \omega$ with $a \backslash s \in$ Fin for each $s \in S$. Let $a^{*} \subseteq a \cap a_{i}$ be such that $a^{*} \notin p$ and card $a^{*}=\omega$. Then we set $X_{i}=X_{k} \cup\left\{a^{*}\right\}$. Assume there is $s \in X_{i} \cup Y_{k}$ with $\operatorname{card}\left(s \cap b_{i}\right)=\omega$. Then we set $Y_{i}=Y_{k}$. Assume now that no such s exists. Let $T=A_{i} \cup\left\{\omega \backslash b: b \in B_{i}\right\} \cup\left\{\omega \backslash x: x \in X_{i}\right\}$. Then T has the fip and card $T<2^{\omega}$. $P\left(2^{\omega}\right)$ implies that there is $c \subseteq \omega$ with $c \backslash s \in$ Fin for each $s \in T$. Let $c^{*} \subseteq c \cap a_{i}$ be such that $c^{*} \notin p$ and card $c^{*}=\omega$. Then we set $Y_{i}=Y_{k} \cup\left\{c^{*} \cup b_{i}\right\}$. It is now easy to see that (i)-(vii) are satisfied.
3. Topological consequences. Let N be the discrete countable space and let βN be the Stone-Čech compactification of N. Then $\beta N \backslash N$ can be represented by the set of all nonprincipal ultrafilters over ω and the topology generated by the following basis \mathfrak{A} : For each $a \subseteq \omega$ let $\hat{a}=\{p \in \beta N \backslash N: a \in p\}$ and $\mathfrak{A}=\{\hat{a}: a \subseteq \omega\}$. Then $\hat{a} \supseteq \hat{b}$ iff $b \subseteq_{*} a$. Then Theorems 1 and 2 can be reformulated as follows:

Theorem 1^{\prime}. Assume $P\left(2^{\omega}\right)$. Then for each $p \in \beta N \backslash N$ there is a dense system \mathfrak{U}_{p} of open sets such that for each $a \subseteq \omega, a \in p$ iff $\operatorname{card}\left\{U \in \mathfrak{U}_{p}: U \subseteq \hat{a}\right\}=2^{\omega}$.

Theorem 2^{\prime}. Assume $P\left(2^{\omega}\right)$. Then for each $p \in \beta N \backslash N$ there is a system \mathfrak{U}_{p} of open sets such that for each $a \subseteq \omega, a \in p$ iff $\operatorname{card}\left\{U \in \mathfrak{U}_{p}: U \cap \hat{a} \neq \varnothing\right\}=2^{\omega}$.
$p \in \beta N \backslash N$ is a 2^{ω}-point if there is a family $\left\{U_{i}: i<2^{\omega}\right\}$ of pairwise disjoint open sets with $p \in\left(\operatorname{cl}_{\beta N} U_{i}\right) \backslash N$. We can use Theorem 1 to derive the following theorem of Hindman [3] (Hindman used CH but there is little difficulty adapting his proof to $P\left(2^{\omega}\right)$):

Theorem 3. Assume $P\left(2^{\omega}\right)$. Then each $p \in \beta N \backslash N$ is a 2^{ω}-point.
Proof. Let $X=\left\{c_{i}: i<2^{\omega}\right\}$ be a mad family with $F(X)=p$. For each $i<2^{\omega}$ choose an ad family $\left\{d_{i k}: k<2^{\omega}\right\}$ with $d_{i k} \subseteq c_{i}$ for each $k<2^{\omega}$. For $k<2^{\omega}$ let

$$
U_{k}=\cup\left\{\hat{d}_{i k}: i<2^{\omega}\right\}
$$

Then the U_{k} are pairwise disjoint open sets and p is in the closure of each U_{k}.
Remark. Balcar and Vojtáš [1] proved Theorem 3 without any set-theoretical assumption. It is also unknown whether Theorem 1 holds without any set-theoretical assumption.
4. Applications to superatomic Boolean algebras. Let \mathfrak{A} be a Boolean algebra. $a \in|\mathfrak{U}|$ is an atom if $a \neq 0$ and for each $b \in|\mathfrak{X}|, a \cap b=a$ or $a \cap b=0 . \mathfrak{U}$ is atomic if for each $b \in|\mathfrak{X}|$ there is an atom a with $a \leqslant b$. \mathfrak{U} is superatomic if each homomorphic image of \mathfrak{A} is atomic. $\underline{2}$ denotes the two-element Boolean algebra, $\operatorname{Pow}(\omega)$ denotes the power set Boolean algebra over ω. For $A \subseteq \operatorname{Pow}(\omega)$ let $\operatorname{Pow}(\omega)[A]$ denote the subalgebra of $\operatorname{Pow}(\omega)$ generated by $A \cup \omega$. For each Boolean algebra $\mathfrak{A}, \mathfrak{U}^{(1)}$ denotes \mathfrak{A} factorized by the ideal generated by the atoms and for each $k \in \omega$ we set $\mathfrak{A}^{(k+1)}=\left(\mathfrak{A}^{(k)}\right)^{(1)}$. If X is a mad family then $\operatorname{Pow}(\omega)[X]$ is a superatomic Boolean algebra whose set of atoms is ω and $(\operatorname{Pow}(\omega)[X])^{(2)} \cong \underline{2}$.

Theorem 4. Assume $P\left(2^{\omega}\right)$. Then there are $2^{2^{\omega}}$ nonisomorphic superatomic Boolean algebras \because whose set of atoms is ω and with $\mathfrak{U}^{(2)} \simeq 2$.

Proof. Let \mathfrak{X} be the class of all mad families X such that $F(X)$ is a nonprincipal ultrafilter. Let $X, Y \in \mathfrak{X} . X$ and Y ar called equivalent if there are $a \in X, b \in Y$ and a one-one function f from a onto b such that for each $s \in X$ with $s \subseteq_{*} a$ there is $t \in Y$ with $f[s]={ }_{*} t$. That means, X and Y are equivalent iff $F(X)$ and $F(Y)$ are equivalent with respect to the Rudin-Keisler order of ultrafilters. Now there are $2^{2 \omega}$ nonprincipal ultrafilters on ω and each equivalence class with respect to the Rudin-Keisler order contains 2^{ω} ultrafilters. Let $\mathfrak{J} \subseteq \mathfrak{X}$ be such that card $\mathfrak{J}=2^{2^{\omega}}$ and the elements of \mathfrak{J} are pairwise nonequivalent. Let

$$
\mathfrak{\Omega}=\{\operatorname{Pow}(\omega)[X]: X \in \mathfrak{J}\} .
$$

Then Ω is the desired class of superatomic Boolean algebras.
Added in proof. As I was informed by Baumgartner, it is impossible to prove Theorem 1 without any set-theoretical assumption.

References

[^1]
[^0]: Received by the editors August 11, 1978 and, in revised form, July 16, 1979.
 AMS (MOS) subject classifications (1970). Primary 02K05; Secondary 06A40, 54A25, 54D35.
 Key words and phrases. Almost disjoint family, Stone-Cech compactification, 2^{ω}-point, superatomic Boolean algebra.
 ${ }^{1}$ The author wishes to thank the referee and J. E. Baumgartner for many valuable remarks.

[^1]: 1. B. Balcar and P. Vojtás, Almost disjoint refinement of families of subsets of N (preprint).
 2. W. Comfort and S. Negrepontis, The theory of ultrafilters, Springer-Verlag, Berlin and New York, 1974.
 3. N. Hindman, On the existence of τ-points in $\beta N \backslash N$, Proc. Amer. Math. Soc. 21 (1969), 277-280.
 4. K. Kunen and F. D. Tall, Between Martin's axiom and Souslin's hypothesis, Fund. Math. 102 (1979), 173-181.
 5. F. Rothberger, On some problems of Hausdorff and of Sierpinski, Fund. Math. 35 (1948), 29-46.

 Humboldt-Universität zu Berlin, Unter den Linden 6, 108 Berlin, German Democratic Republic

