MARTIN'S AXIOM IMPLIES THAT DE CAUX'S SPACE IS COUNTABLY METACOMPACT

WILLIAM G. FLEISSNER ${ }^{1}$

Abstract

De Caux defined a space $S(\mathcal{E})$ and, assuming \& , showed that $S(\mathcal{E})$ is normal but not countably metacompact. We assume $\mathrm{MA}_{\omega_{1}}$ and show that $S(\mathcal{L})$ is countably metacompact.

In [dC] Peter de Caux constructed a Dowker space assuming \&. (For a definition of \& and review of the Dowker space problem, see [\mathbf{R}].) Peter Nyikos [N] asked whether it was consistent with MA $+\neg \mathrm{CH}$ that de Caux's space be a Dowker space. Here we answer negatively by proving the title. (Martin's Axiom in the title means $\mathrm{MA}_{\omega_{\mathrm{i}}}$)

Definition. A ladder system, \mathcal{L}, is a sequence ($L_{\lambda}: \lambda \in \omega_{1} \cap$ LIM) such that each L_{λ} is a cofinal subset of λ with order type ω.

Definition. Given a ladder system \mathcal{L}, we define a space $S(\mathcal{L})$ as follows. The point set of $S(\mathcal{E})$ is $\omega \times \omega_{1}$. We define a topology on $\omega \times \omega_{1}$ by defining a weak base \mathscr{B}_{x} at each point x. A set U will be open iff $x \in U$ implies there is $B \in \mathscr{B}_{x}$, $B \subset U$. If x is of the form $(0, \alpha)$ or $(n, \alpha+1)$, the only element of \mathscr{B}_{x} is $\{x\}$. If x is of the form $(n+1, \lambda)$, where $\lambda \in$ LIM, then \mathscr{B}_{x} is the countable family of sets of the form $\{(n+1, \lambda)\} \cup\left\{\{n\} \times\left(S_{\lambda}-e\right)\right\}$, where e is a finite set.

De Caux assumed \& to get the existence of a ladder system \mathcal{E} with special properties, and used the special properties to show that $S(\mathcal{L})$ is a Dowker space. Nyikos calls any space of the form $S(\mathfrak{E})$ a de Caux's Litmus strip space. Clearly, one can construct $S(\mathcal{E})$ without assuming \& . Further, the properties of $S(\mathcal{E})$ could vary with \mathcal{L}. It is not hard to define \mathcal{L} so that $S(\mathcal{L})$ is a σ-discrete Moore space, for example. What we are asserting in this paper is that assuming MA $+\neg \mathrm{CH}$, all spaces of the form $S(\mathcal{E})$ are countably metacompact.

DEFINITION. A space is countably metacompact iff whenever $\left(H_{n}\right)_{n \in \omega}$ is a decreasing sequence of closed sets with empty intersection then there is a sequence $\left(U_{n}\right)_{n \in \omega}$ of open sets with empty intersection satisfying $U_{n} \supset \boldsymbol{H}_{n}$.

Definition. A poset P has property K iff whenever W is an uncountable subset of P there is an uncountable subset W^{\prime} of W of compatible elements. The product of property K posets has property K, a fortiori, ccc.

Definition. For A a set $[A]^{2}$ is the set of two element subsets of A. If A is totally ordered by $<$, we may think of $[A]^{2}$ as $\{(a, b) \in A \times A: a<b\}$. A theorem of

[^0]Dushnik and Miller ${ }^{2}$ asserts that wherever $(A,<)$ has order type ω_{1} and $f:[A]^{2} \rightarrow\{0,1\}$ then either there is a subset, S_{0}, of A of order type ω_{1} such that $f(a, b)=0$ for all $(a, b) \in\left[S_{0}\right]^{2}$ [we will abbreviate $f((a, b))$ by $\left.f(a, b)\right]$ or there is a subset, S_{1}, of order type $\omega+1$ such that $f(a, b)=1$ for all $(a, b) \in\left[S_{1}\right]^{2}$. We abbreviate this theorem by $\omega_{1} \rightarrow\left(\omega_{1}, \omega+1\right)_{2}^{2}$.

Now, assume we are given a space $S(\mathcal{L})$, and a decreasing sequence $\left(H_{n}\right)_{n \in \omega}$ of closed sets with empty intersection. We will use MA $+\neg \mathrm{CH}$ to define a sequence $\left(U_{n}\right)_{n \in \omega}$ of open sets with empty intersection satisfying $U_{n} \supset H_{n}$.

We define P_{n}, a poset of approximations to U_{n}. Our plan is to define

$$
U_{n}=\bigcup\left\{c_{p}: p \in G\right\}=\bigcup\left\{\bigcup \text { range } b_{p}: p \in G\right\}
$$

Let P_{n} be the set of triples $p=\left(a_{p}, c_{p}, b_{p}\right)$, usually abbreviated (a, c, b), satisfying

$$
\begin{aligned}
& a \text { is a finite subset of } S(\mathscr{E})-H_{n}, \\
& c \text { is a finite subset of } S(\mathscr{L}), \\
& b \text { is a function with domain } c, b(x) \in \mathscr{B}_{x}, \\
& a \cap \bigcup \text { range } b=\varnothing
\end{aligned}
$$

We claim that P has property K. Let W be an uncountable subset of P. First we apply the Δ-system lemma to $\left\{a_{p}: p \in W\right\}$ to get an uncountable $W_{1} \subset W$ such that $\left\{a_{p}: p \in W_{1}\right\}$ is a Δ-system with root r_{a}. Similarly obtain an uncountable $W_{2} \subset W_{1}$ such that $\left\{c_{p}: p \in W_{2}\right\}$ is a Δ-system with root r_{c}. Next, find an uncountable $W_{3} \subset W_{2}$ such that for all $p, q \in W_{3}, b_{p}\left|r_{c}=b_{q}\right| r_{c}$ and card $c_{p}=k=$ card c_{q}. Now we define $W_{4}=\left\{p(\beta): \beta<\omega_{1}\right\}$ by induction on β so that the unfixed part of $p(\beta)$ is strictly above the sup of the unfixed parts of $p\left(\beta^{\prime}\right)$, $\beta^{\prime}<\beta$. Precisely, for $x=(n, \alpha) \in S(\mathcal{E})$ define $h(x)=\alpha$; define $h(a)=$ $\max \{h(x): x \in a\}, h(c)=\max \{h(x): x \in c\}, h(p)=\max \left\{h\left(a_{p}\right), h\left(c_{p}\right)\right\}$. Define $p(\beta)$ so that if $x \in a_{p(\beta)} \cup c_{p(\beta)}$ and $h(x)<\sup \left\{h\left(p\left(\beta^{\prime}\right)\right): \beta^{\prime}<\beta\right\}$, then $x \in r_{a}$ $\cup r_{c}$.

All the above refining has achieved: If $\beta^{\prime}<\beta$, and $p(\beta)$ and $p\left(\beta^{\prime}\right)$ are incompatible, then there is $x \in c_{p(\beta)}-r_{c}$ such that $b_{p(\beta)}(x) \cap a_{p(\beta)} \neq \varnothing$. List each $c_{p(\beta)}$ as $(x(\beta, j))_{j<k}$. We define a function $f_{0}:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ by $f\left(\beta^{\prime}, \beta\right)=0$ iff $b_{p(\beta)}(x(\beta, 0)) \cap a_{p\left(\beta^{\prime}\right)}=\varnothing$. We apply $\omega_{1} \rightarrow\left(\omega_{1}, \omega+1\right)_{2}^{2}$ to get either S_{0} or S_{1}.

We claim that we get S_{0} of order type ω_{1}. Aiming for a contradiction, assume $S_{1} \subset W_{4}$ has order type $\omega+1$ and $f\left(\beta^{\prime}, \beta\right)=1$ for all $\left(\beta^{\prime}, \beta\right) \in\left[S_{1}\right]^{2}$. Let $\left(\gamma_{n}\right)_{n<\omega}$ enumerate S_{1} in increasing order. Let $x\left(\gamma_{\omega}, 0\right)=(m+1, \lambda)$. Let $\left(m, \delta_{n}\right) \in b_{p\left(\gamma_{\omega}\right)} \cap$ $a_{p\left(\gamma_{n}\right)}$. Then $\left(\delta_{n}\right)_{n \in \omega}$ is an increasing sequence of elements of L_{λ} whose sup is less than λ. Contradiction.

Define $f_{1}:\left[S_{0}\right]^{2} \rightarrow\{0,1\}$ as we did f_{0} with $x(\beta, 0)$ replaced by $x(\beta, 1)$. The same argument gives that we get a new S_{0} (rather than S_{1}). We repeat, applying $\omega_{1} \rightarrow\left(\omega_{1}, \omega+1\right)_{2}^{2} k$ times, to get $S^{*} \subset \omega_{1}$ of order type $\omega_{1} ;\left\{p(\beta): \beta \in S^{*}\right\}$ is an

[^1]uncountable subset of W of compatible elements. We have shown that P_{n} has property K.

Let P be the product poset $\Pi_{n} P_{n}$. We consider P to be the set of functions f with domain ω such that $f(n) \in P_{n}$ and $\{n \in \omega: f(n) \neq(\varnothing, \varnothing, \varnothing)\}$ is finite; $f^{\prime} \leqslant f$ iff for all $n, f^{\prime}(n)<f(n)$. The following subsets of P are dense: for all $x \in S(£)$,

$$
D_{x}=\left\{f \in P: \exists n x \in a_{f(n)}\right\}
$$

for all $n \in \omega, x \in H_{n}$

$$
D_{x, n}=\left\{f \in P: x \in c_{f(n)}\right\}
$$

for all $n \in \omega, x \in S(\mathfrak{C})$

$$
D_{x, n}^{\prime}=\left\{f \in P: x \in c_{f(n)} \cup a_{f(n)}\right\}
$$

Since there are ω_{1} of the above dense subsets, by MA $+\neg \mathrm{CH}$ there is a filter G on P meeting all of them. For each $n \in \omega$, define $U_{n}=U\left\{c_{f(n)}: f \in G\right\}$. Then $\left(U_{n}\right)_{n \in \omega}$ is a sequence of open subsets with empty intersection satisfying $U_{n} \supset H_{n}$. (The first family of dense sets ensures that $\cap_{n \in \omega} U_{n}=\varnothing$; the second that $U_{n} כ$ H_{n}; the third that U_{n} is open.) We have shown that $S(\mathcal{L})$ is countably metacompact.

Addenda. 1. A simple modification of the proof shows that, assuming $\mathrm{MA}_{\omega_{1}}$, every subset of $S(£)$ is G_{δ}.
2. P. Nyikos has also asked whether the following statement, Σ, is a theorem of ZFC.
"There is a ladder system $\mathcal{E}=\left(L_{\lambda}: \lambda \in \omega_{1} \cap\right.$ LIM $)$ such that whenever x is a stationary subset of ω_{1}, then there is $\lambda<\omega_{1}$ such that $x \cap L_{\lambda}$ is infinite."

Negative answers have been given by Komj'ath, Kunen, and the author. Kunen showed that $\mathrm{MA}_{\omega_{1}} \rightarrow \neg \Sigma$, using the product of ω copies of Wage's poset [Wa]. By a density argument, the union of the countably many "generic" sets is ω_{1}, so at least one must be stationary. The author's negative answer is now a technique looking for an application. The key idea is that the following statement is consistent with ZFC.

$$
\begin{aligned}
& \text { "MA }+2^{\omega}=\omega_{3}+\text { there is a family } \mathcal{C} \text { of club subsets of } \omega_{1} \\
& \text { satisfying } \\
& \text { 1. } \mathcal{C} \text { has cardinality } \omega_{2} \text {. } \\
& \text { 2. If } C \text { is club in } \omega_{1} \text {, then there is } C^{\prime} \in \mathcal{C}, C^{\prime} \subset C \text {." }
\end{aligned}
$$

Bibliography

[dC] P. de Caux, A collectionwise normal weakly θ-refinable Dowker space which is neither irreducible nor realcompact, Topology Proceedings 1 (1976), 67-78.
[ER] P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489.
[F] W. Fleissner, Applications of stationary sets in topology, Surveys in General Topology (G. Reed, Ed.), Academic Press, New York, 1980, pp. 163-183.
[N] P. Nyikos, A topological Litmus paper strip, Notices Amer. Math. Soc. 26 (1979), A-478.
[R] M. E. Rudin, Lectures on set theoretic topology, CBMS Regional Conf. Ser. Math., vol. 23, Amer. Math. Soc., Providence, R. I., 1975.
[Wa] M. L. Wage, Almast disjoint sets and Martin's axiom, J. Symbolic Logic 44 (1979), 313-318.
[W] N. Williams, Combinatorial set theory, North-Holland, Amsterdam, 1977.
Department of Mathibmatics, University of Pittsburgh, Ptitsburgh, Pennsylvania 15261

[^0]: Received by the editors August 9, 1979 and, in revised form, November 14, 1979.
 1980 Mathematics Subject Classification. Primary 54A35, 54D18.
 Key words and phrases. Club, Martin's Axiom, Dowker space.
 ${ }^{1}$ Partially supported by NSF grant MCS 79-01848.

[^1]: ${ }^{2}$ Not exactly. Some unidentified person noted that some proofs of the Dushnik-Miller theorem actually give this slightly stronger result. See [W, Theorem 7.4.1]; [F, Theorem 4.5]. It is also a special case of Corollary 1 to Theorem 3.4, [ER].

