MARTIN'S AXIOM IMPLIES THAT DE CAUX'S SPACE IS COUNTABLY METACOMPACT

WILLIAM G. FLEISSNER¹

ABSTRACT. De Caux defined a space $S(\mathcal{E})$ and, assuming \clubsuit , showed that $S(\mathcal{E})$ is normal but not countably metacompact. We assume MA_{ω_1} and show that $S(\mathcal{E})$ is countably metacompact.

In [dC] Peter de Caux constructed a Dowker space assuming \clubsuit . (For a definition of \clubsuit and review of the Dowker space problem, see [R].) Peter Nyikos [N] asked whether it was consistent with MA + \neg CH that de Caux's space be a Dowker space. Here we answer negatively by proving the title. (Martin's Axiom in the title means MA₄₀.)

DEFINITION. A ladder system, \mathcal{L} , is a sequence $(L_{\lambda}: \lambda \in \omega_1 \cap \text{LIM})$ such that each L_{λ} is a cofinal subset of λ with order type ω .

DEFINITION. Given a ladder system \mathcal{L} , we define a space $S(\mathcal{L})$ as follows. The point set of $S(\mathcal{L})$ is $\omega \times \omega_1$. We define a topology on $\omega \times \omega_1$ by defining a weak base \mathfrak{B}_x at each point x. A set U will be open iff $x \in U$ implies there is $B \in \mathfrak{B}_x$, $B \subset U$. If x is of the form $(0, \alpha)$ or $(n, \alpha + 1)$, the only element of \mathfrak{B}_x is $\{x\}$. If x is of the form $(n + 1, \lambda)$, where $\lambda \in \text{LIM}$, then \mathfrak{B}_x is the countable family of sets of the form $\{(n + 1, \lambda)\} \cup \{\{n\} \times (S_\lambda - e)\}$, where e is a finite set.

De Caux assumed \clubsuit to get the existence of a ladder system \pounds with special properties, and used the special properties to show that $S(\pounds)$ is a Dowker space. Nyikos calls any space of the form $S(\pounds)$ a de Caux's Litmus strip space. Clearly, one can construct $S(\pounds)$ without assuming \clubsuit . Further, the properties of $S(\pounds)$ could vary with \pounds . It is not hard to define \pounds so that $S(\pounds)$ is a σ -discrete Moore space, for example. What we are asserting in this paper is that assuming MA + \neg CH, all spaces of the form $S(\pounds)$ are countably metacompact.

DEFINITION. A space is countably metacompact iff whenever $(H_n)_{n \in \omega}$ is a decreasing sequence of closed sets with empty intersection then there is a sequence $(U_n)_{n \in \omega}$ of open sets with empty intersection satisfying $U_n \supset H_n$.

DEFINITION. A poset P has property K iff whenever W is an uncountable subset of P there is an uncountable subset W' of W of compatible elements. The product of property K posets has property K, a fortiori, ccc.

DEFINITION. For A a set $[A]^2$ is the set of two element subsets of A. If A is totally ordered by < , we may think of $[A]^2$ as $\{(a, b) \in A \times A : a < b\}$. A theorem of

Received by the editors August 9, 1979 and, in revised form, November 14, 1979.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54A35, 54D18.

Key words and phrases. Club, Martin's Axiom, Dowker space.

¹Partially supported by NSF grant MCS 79-01848.

Dushnik and Miller² asserts that wherever (A, <) has order type ω_1 and $f: [A]^2 \to \{0, 1\}$ then either there is a subset, S_0 , of A of order type ω_1 such that f(a, b) = 0 for all $(a, b) \in [S_0]^2$ [we will abbreviate f((a, b)) by f(a, b)] or there is a subset, S_1 , of order type $\omega + 1$ such that f(a, b) = 1 for all $(a, b) \in [S_1]^2$. We abbreviate this theorem by $\omega_1 \to (\omega_1, \omega + 1)_2^2$.

Now, assume we are given a space $S(\mathcal{L})$, and a decreasing sequence $(H_n)_{n \in \omega}$ of closed sets with empty intersection. We will use MA + \neg CH to define a sequence $(U_n)_{n \in \omega}$ of open sets with empty intersection satisfying $U_n \supset H_n$.

We define P_n , a poset of approximations to U_n . Our plan is to define

$$U_n = \bigcup \{c_p : p \in G\} = \bigcup \{\bigcup \text{ range } b_p : p \in G\}.$$

Let P_n be the set of triples $p = (a_p, c_p, b_p)$, usually abbreviated (a, c, b), satisfying

a is a finite subset of $S(\mathcal{L}) - H_n$, c is a finite subset of $S(\mathcal{L})$, b is a function with domain c, $b(x) \in \mathfrak{B}_x$, $a \cap \bigcup$ range $b = \emptyset$.

We claim that P has property K. Let W be an uncountable subset of P. First we apply the Δ -system lemma to $\{a_p: p \in W\}$ to get an uncountable $W_1 \subset W$ such that $\{a_p: p \in W_1\}$ is a Δ -system with root r_a . Similarly obtain an uncountable $W_2 \subset W_1$ such that $\{c_p: p \in W_2\}$ is a Δ -system with root r_c . Next, find an uncountable $W_3 \subset W_2$ such that for all $p, q \in W_3$, $b_p | r_c = b_q | r_c$ and card $c_p = k =$ card c_q . Now we define $W_4 = \{p(\beta): \beta < \omega_1\}$ by induction on β so that the unfixed part of $p(\beta)$ is strictly above the sup of the unfixed parts of $p(\beta')$, $\beta' < \beta$. Precisely, for $x = (n, \alpha) \in S(\mathcal{C})$ define $h(x) = \alpha$; define h(a) =max $\{h(x): x \in a\}$, $h(c) = \max\{h(x): x \in c\}$, $h(p) = \max\{h(a_p), h(c_p)\}$. Define $p(\beta)$ so that if $x \in a_{p(\beta)} \cup c_{p(\beta)}$ and $h(x) < \sup\{h(p(\beta')): \beta' < \beta\}$, then $x \in r_a \cup r_c$.

All the above refining has achieved: If $\beta' < \beta$, and $p(\beta)$ and $p(\beta')$ are incompatible, then there is $x \in c_{p(\beta)} - r_c$ such that $b_{p(\beta)}(x) \cap a_{p(\beta')} \neq \emptyset$. List each $c_{p(\beta)}$ as $(x(\beta, j))_{j < k}$. We define a function f_0 : $[\omega_1]^2 \to \{0, 1\}$ by $f(\beta', \beta) = 0$ iff $b_{p(\beta)}(x(\beta, 0)) \cap a_{p(\beta')} = \emptyset$. We apply $\omega_1 \to (\omega_1, \omega + 1)_2^2$ to get either S_0 or S_1 .

We claim that we get S_0 of order type ω_1 . Aiming for a contradiction, assume $S_1 \subset W_4$ has order type $\omega + 1$ and $f(\beta', \beta) = 1$ for all $(\beta', \beta) \in [S_1]^2$. Let $(\gamma_n)_{n \leq \omega}$ enumerate S_1 in increasing order. Let $x(\gamma_{\omega}, 0) = (m + 1, \lambda)$. Let $(m, \delta_n) \in b_{p(\gamma_{\omega})} \cap a_{p(\gamma_n)}$. Then $(\delta_n)_{n \in \omega}$ is an increasing sequence of elements of L_{λ} whose sup is less than λ . Contradiction.

Define $f_1: [S_0]^2 \to \{0, 1\}$ as we did f_0 with $x(\beta, 0)$ replaced by $x(\beta, 1)$. The same argument gives that we get a new S_0 (rather than S_1). We repeat, applying $\omega_1 \to (\omega_1, \omega + 1)_2^2 k$ times, to get $S^* \subset \omega_1$ of order type ω_1 ; $\{p(\beta): \beta \in S^*\}$ is an

²Not exactly. Some unidentified person noted that some proofs of the Dushnik-Miller theorem actually give this slightly stronger result. See [W, Theorem 7.4.1]; [F, Theorem 4.5]. It is also a special case of Corollary 1 to Theorem 3.4, [ER].

uncountable subset of W of compatible elements. We have shown that P_n has property K.

Let P be the product poset $\prod_n P_n$. We consider P to be the set of functions f with domain ω such that $f(n) \in P_n$ and $\{n \in \omega: f(n) \neq (\emptyset, \emptyset, \emptyset)\}$ is finite; $f' \leq f$ iff for all $n, f'(n) \leq f(n)$. The following subsets of P are dense: for all $x \in S(\mathcal{L})$,

$$D_x = \{ f \in P \colon \exists n \ x \in a_{f(n)} \}$$

for all $n \in \omega, x \in H_n$

$$D_{x,n} = \left\{ f \in P \colon x \in c_{f(n)} \right\}$$

for all $n \in \omega, x \in S(\mathcal{C})$

$$D'_{x,n} = \{ f \in P : x \in c_{f(n)} \cup a_{f(n)} \}.$$

Since there are ω_1 of the above dense subsets, by MA + \neg CH there is a filter G on *P* meeting all of them. For each $n \in \omega$, define $U_n = \bigcup \{c_{f(n)}: f \in G\}$. Then $(U_n)_{n \in \omega}$ is a sequence of open subsets with empty intersection satisfying $U_n \supset H_n$. (The first family of dense sets ensures that $\bigcap_{n \in \omega} U_n = \emptyset$; the second that $U_n \supseteq H_n$; the third that U_n is open.) We have shown that $S(\mathcal{L})$ is countably metacompact.

ADDENDA. 1. A simple modification of the proof shows that, assuming MA_{ω_1} , every subset of $S(\mathcal{L})$ is G_{δ} .

2. P. Nyikos has also asked whether the following statement, Σ , is a theorem of ZFC.

"There is a ladder system $\mathcal{L} = (L_{\lambda}: \lambda \in \omega_1 \cap \text{LIM})$ such that whenever x is a stationary subset of ω_1 , then there is $\lambda < \omega_1$ such that $x \cap L_{\lambda}$ is infinite."

Negative answers have been given by Komj'ath, Kunen, and the author. Kunen showed that $MA_{\omega_1} \rightarrow \neg \Sigma$, using the product of ω copies of Wage's poset [Wa]. By a density argument, the union of the countably many "generic" sets is ω_1 , so at least one must be stationary. The author's negative answer is now a technique looking for an application. The key idea is that the following statement is consistent with ZFC.

"MA + $2^{\omega} = \omega_3$ + there is a family \mathcal{C} of club subsets of ω_1 satisfying

1. \mathcal{C} has cardinality ω_2 .

2. If C is club in ω_1 , then there is $C' \in \mathcal{C}, C' \subset C$."

W. G. FLEISSNER

BIBLIOGRAPHY

[dC] P. de Caux, A collectionwise normal weakly θ -refinable Dowker space which is neither irreducible nor realcompact, Topology Proceedings 1 (1976), 67–78.

[ER] P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489.

[F] W. Fleissner, Applications of stationary sets in topology, Surveys in General Topology (G. Reed, Ed.), Academic Press, New York, 1980, pp. 163–183.

[N] P. Nyikos, A topological Litmus paper strip, Notices Amer. Math. Soc. 26 (1979), A-478.

[R] M. E. Rudin, Lectures on set theoretic topology, CBMS Regional Conf. Ser. Math., vol. 23, Amer. Math. Soc., Providence, R. I., 1975.

[Wa] M. L. Wage, Almost disjoint sets and Martin's axiom, J. Symbolic Logic 44 (1979), 313-318.
[W] N. Williams, Combinatorial set theory, North-Holland, Amsterdam, 1977.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH, PENNSYLVANIA 15261