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TWO NEW EXTREMAL PROPERTIES
OF THE KOEBE-FUNCTION!

" R. KLOUTH AND K.-J. WIRTHS

ABSTRACT. Using essentially Lowner’s method the extremality of the Koebe-func-
tions with respect to two coefficient problems for inverses of univalent functions is
proved.

Let D = {z| |z| < 1} and S = { f|f regular and univalent in D, f(0) = f'(0) — 1
= 0}. K. Lowner [4] proved: If F(w) = w + 7., A,w" is the inverse of a function
in S, then

|4,] < 2n)!/n!(n + 1)!
with equality only for the inverses of the Koebe-functions k,(z) = z(1 + 0z)?,
lo] = 1.
In this note we shall prove similar results for the functions

In F'(w), A(F(w), w) = (F"/FY —3(F"/F').

This work was stimulated by a conjecture of the first author (see [2] and [3]) and
the preprint [6] of a lecture given by G. Schober at the Durham Conference on
Aspects of Contemporary Complex Analysis in 1979.

THEOREM. Let F be the inverse of a function in S, K\(w) = ki'(w),

o0 -]
In F'(w)= 3, Bw" InKjw)= > bw"

n=1 n=1

o0 o0
A(F(w),w) = 3 Cw",  AK(w),w) = X cw"
n=0 n=0
Then |B,| < b, for n € N and |C,| < c, for n € N U {0}. Equality for n € N occurs
only for the functions K, (w) = k;'(w), |o| = 1.

REMARKS. In the case of the Schwarzian derivative A(K,(w), w) we have the
simple representation ¢, = 4"6(n + 1), n € N U {0} (see [3]). The first part of the
theorem implies Lowner’s theorem since each A4, is a polynomial with positive
coefficients in the B,.
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ProoOF. The proof follows the same line as the famous proof of Lowner’s result
(see f.i. [1], [4], [6]). So we need only give here the crucial steps.

If f € S, f can be embedded into a subordination chain. It results that F, the
inverse of f, has a representation

F(w) = ‘lim Oe™w, 1),  9D(w, t)/3t = w(0D(w, £)/Iw)p(w, ) (1)
with

o0
p(w,) =1+ p()w", Rep(w,t)>0 forw € D,t > 0,®(w,0) =w. (2)

n=1
(For details see [5].)
Using (1) and (2) and setting
L(w,t) :=1n 8<I)(w, 0 _ 2 B,(t)w",
n=0
A(w, 1) = A(P(w, 1), w) = 2 C,()w",
n=0

we get

9L /3t = (AL /dw)wp + (3/3w)(wp),
0A /9t = (3A/dw)wp + 2A(3/9w)(wp) + (33/3w?)(wp),

Bi)=t  B(n)=[en '>(213(7>p,_,(r)+(n+l)pn(f)) neN,

Jj=1
3)
C(1) = [eeDe *>( S Grp_r)an — j +2) + L2 ,,,z(f)) dr
Jj=0
n €Nu {0},

)

B, = tlim e™B,(1), n €N, (5)

C, = tlim e "*2'C (1), neNuU ({0} (6)

(3) and (4) show that Re B,(?), resp. Re C,(¢) is maximal for fixed ¢ if and only if
we choose By(1), j=1,...,n— 1, resp. C(7), j=0,...,n—1, 7 €[0, ] real
and maximal and any p;(7) involved in (3), resp. (4), equal to the constant 2. As a
consequence of (5) and (6) we get that Max Re B,, resp. Max Re C,, n €N, is
attained if and only if p,(f) = 2 which means p(w, ) = (1 + w)/(1 — w). Now the
assertion of the theorem for n € N follows from the fact that the problems of
finding the maximum of the real part and the maximum of the modulus for the
given coefficients are equivalent (up to a rotation).

The equality C, = —f®(0) + 2(f”(0))* shows that the remaining case is a classi-
cal inequality.
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