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PARACOMPACTNESS IN PERFECTLY NORMAL,

LOCALLY CONNECTED, LOCALLY COMPACT SPACES

DIANE J. LANE

Abstract. It is shown that, under (MA H—iCH), every perfectly normal, locally

compact and locally connected space is paracompact.

In [Ru, Z] Rudin and Zenor use the continuum hypothesis (CH) to construct a

perfectly normal, separable manifold that is not Lindelöf and is therefore not

paracompact. Manifold here means a locally Euclidean Hausdorff space. Rudin has

shown recently [Ru] that if Martin's Axiom and the negation of the continuum

hypothesis (MA H—i CH) hold, then every perfectly normal manifold is metrizable.

In this paper we show that Rudin's technique can be used to obtain a more general

result: If (MA H—iCH), then every perfectly normal, locally compact and locally

connected space is paracompact. Since locally metrizable paracompact spaces are

metrizable, Rudin's theorem follows.

The following theorems will be used.

Theorem 1 (Z. Szentmiklossy [S]). If (MA H—i CT7), then there is no heredi-

tarily separable, nonhereditarily Lindelöf, compact (locally compact) Hausdorff space.

Theorem 2 (Juhasz [J]). If (MA + -i C77), then there is no hereditarily Lindelöf,

nonhereditarily separable compact (locally compact) Hausdorff space.

Theorem 3 (Reed and Zenor [R, Z]). Every perfectly normal, locally compact and

locally connected subparacompact space is paracompact.

Theorem 4 (Alster and Zenor [A, Z]). Every perfectly normal, locally compact

and locally connected space is collectionwise normal with respect to discrete collections

of compact sets.

The following result was obtained independently by H. Junilla and J. Chaber. A

proof can be found in [C, Z].

Theorem 5. A space X is perfect and subparacompact if and only if whenever

{ rtVß)ß<y 's a well-ordered open cover of X, there exists a sequence {%„}„eu of open

covers of X with the property that if x G X, there exists « G <o such that st(jc, 9L„) =

{ U G ^i„\x G U] is contained in the first member of { Wß)ß<y that contains x.
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We prove

Theorem 6. // (MA + -i CH), then every perfectly normal, locally compact and

locally connected space is paracompact.

Proof. Let I be a perfectly normal, locally compact and locally connected

space. Since components of a locally connected space are open, we may assume

that X is connected. We prove that X is subparacompact and thus, by Theorem 3,

is paracompact.

Since compact subsets of a perfect space are hereditarily Lindelöf, Theorem 2

implies that compact subsets of X are hereditarily separable.

By transfinite induction we choose for each a < co, a subset Xa of X such that

(i) Xa is the countable union of open sets, each of which is connected, heredi-

tarily separable and has compact closure, and

(ü) cl(Uß<aXß) c Xa.

Since X is locally compact and locally connected we can clearly make such choices

unless there is an a < co, such that cl( U ß<aXß) is not Lindelöf.

Assume that X < co, and that Xa has been constructed for a < X. Let C =

cl(Ua<xA'a). C is separable. Now suppose that C is not hereditarily separable.

Then there exists S = {xß}ß<Ui c C such that if ß < co, then xß E cl{xa}a<ß. For

each ß < co, let Uß denote a hereditarily separable open set in X such that xß E Uß

and Uß n cl{xa}a<ß = 0. Since S is not separable, no countable subcollection of

the Uys covers S. So there is an uncountable subset A of co, such that, if ß < a in

A, then xa E Uß. Since X is perfect there is a sequence { Vn}nSa of open sets such

that f\^_xVn = (C- \Ja£A Ua). For some n E co, An = [a G A\xa E Vn} is un-

countable. Observe that S„ = [xa\a E A„} is a closed discrete subset of X. By

Theorem 4 we can separate the points of S„ with a disjoint collection of open sets.

But this contradicts the fact that C is separable. We conclude that C is hereditarily

separable. Since C is locally compact, Theorem 1 implies that C is hereditarily

Lindelöf as well. Therefore we can construct X satisfying (i) and (ii).

Observe that (J a<aXa is both open and closed, and since we are assuming X is

connected, Ua<aiXa = X. (Ua<a Xa is open by definition. X is perfect and

locally compact and therefore is first countable. Since cl(Uß<aXß) c Xa for

a < co,, there can be no points of X in cl( Ua<u A^) - U a<u Xa.)

So we have a perfectly normal, locally compact and locally connected space

X - Ua<UlXa where each Xa is open, hereditarily Lindelöf and cl( U ß<aXß) C

Xa. We let X'a = Xa - \J ß<a Xß. In order to show that X is subparacompact we

use the characterization of perfect subparacompactness given in Theorem 5.

Let {Wß}ß<y he a well-ordered open cover of X. Since each Xa is perfect and

subparacompact, for each a < co, there is a sequence {^on},,^ of open covers of

Xa having the property described in Theorem 5 with respect to the open cover

{Wß n Xa}ß<y of Xa. We may assume that GHa<n + X) refines 6&an f or n G co and

a < ux.

For each a < co, we can choose by induction a sequence {%„„}„eu having the

following properties.
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(a) 9CM is a countable collection of open sets covering *^ and refining tylm,

(b) if * G %„, cl(K) is compact, cl(7Q c Xa and Kç\X'a*0, and

(c) if x G X'a and S is a finite subcollection of U {^1 ß < « and/ G w} then

there are infinitely many distinct elements of %„, containing x and not intersecting

cl(U^).

Note that since * is locally connected and normal, there are uncountably many

distinct open sets containing a given point and lying within a given neighborhood.

This, together with the fact that *„ is Lindelöf, allows us to easily construct %an

satisfying (c).

Let %a = U „eX; let % = U a<u%a. Note that |9CJ = « and |9C| = to,.

For K G %a, define g(K) = a; observe that g(K) = sup{ ß\K n X'ß ̂  0).

Define P to be the set of all functions/ such that

(1) the domain off, called D(f), is a finite subset of %,

(2) the range of/, called R(f), is a subset of «, and

(3) if 77, A: G D(f), g(H) < g(K), and 77 n K n *^W) * 0, then/(77) >/(*).

Partially order P by defining/ < g provided g extends/.

If K G %M, define FKn - {/ G P|7)(/) n 9CM n {T7|/(77) > «} covers * n

*a'}. Clearly, FKn is open in (P, <). We will prove that F^ is dense. Suppose

/ G P. Since * n *„' is compact and %an has property (c), we can choose a finite

collection § c %an such that S covers K n *«, S n 7)(/) = 0, and if G G g and

J G D(f) n {77 G 9C| g(77) < a) then G n / = 0 Let

m = max{«, max{/(77)|77 G 7>(/)}}.

We choose « G P such that £>(«) = 7)(/) u @,hf D(f) = /, and if G G § f(G) =

m. Since « extends/and h G FKn, FKn is dense in (P, <).

The proof that (P, < ) is ccc is identical to the proof given by Rudin.

Since (P, <) is ccc, [FKn: K G %, n G w} has cardinality <o„ and each FKn is

open and dense in (P, < ), by (MA H—i CH) there is a generic G c P which

intersects every T7^. If / and/' belong to G there is an h G P such that « extends

both/and/'. We use this G to find a sequence {l„}„eiJ of covers of * satisfying

Theorem 5 with respect to the open cover { WB}p< .

Let %' = {* G %\K G D(f) for some/ G G}. Note that if/and/' belong to

G and AT G D(f) n 7>(/') then/(AT) = f'(K). We define a function F: 3C' -> w by

F(7Q = /(7Q where/ G G and 7C G D(f). Let 7)„ = [K G %'\F(K) > «}.

For « G w, a < «,, and x G X'a, choose Uxn G D„ n 5C„„ with x G Uxn. Such a

ÍJ^ exists since if x G X'a there is a Tí" G %an containing x and G n F^„ ^ 0. Let

%„ = {i/JxG*}.

We claim that [sli„}neu witnesses the fact that * is (perfectly) subparacompact.

To see this, suppose x G * and ß < u, is the first ordinal such that x G Wß. There

is an a < w, such that x G X'a. By (a) there is an m G w such that st(x, %am) G

Wß. Choose KxG%a n %' such that x G Kx. Let « = max{«i, .F(TQ}. We show

that st(x, %,„) c Wß.

Suppose that x G Uyn G slín. Then y G X¿ for some 5 < w, and ÍV,,n G Dn n

Co¿e (i). a = S. Since %„ refines %m, st(x, 5CM) c ^ and Uy„ G st(x, 3C„„).
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Case (ii). a > 8. Since Uy„ G %tn implies that Uyn c Xg, a> 8 contradicts the

fact that x G Uyn.

Case (iii). a < 8. Since Uyn E D„ we know that F(Uyn) > n > F(KX). However

since Kx and Uyn are both in %' and G is generic in (P, < ), there is an/ G P such

that Hx and i/,„ are in £>(/). Since a = g(/Q and 8 = g^) and X¿ n Kx n Uyn

=£ 0, a < 8 gives a contradiction to (3).

Thus the sequence {%■„}„(=„ has the desired property. By Theorem 5, X is

subparacompact.

Corollary to Theorem 6. If (MA -i—i CH), then every component of a perfectly

normal, locally compact, locally connected space is Lindelöf.

This follows from the fact that every locally compact, paracompact space is the

free union of a-compact spaces.
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