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FINITELY CONVERGENT AND CONCENTRIC SEMIGROUPS

M. SATYANARAYANA

Abstract. In this paper we shall study Tamura's finitely convergent and con-

centric semigroups and provide some structure theorems. In particular commuta-

tive finitely convergent semigroups are completely characterized.

According to Tamura [3], a semigroup S is said to be finitely convergent, if for

every x in S, n ^1Sx"S = SxmS for some positive integer m. Simple semigroups,

bands, nil semigroups, finite semigroups, right regular semigroups, left regular

semigroups, and intraregular semigroups are finitely convergent semigroups. The

bicyclic semigroup is an example of a regular semigroup which is finitely conver-

gent. A free inverse semigroup with one generator is an example of a regular

semigroup which is not finitely convergent. This example was furnished by Maria

Szendrei in one of the seminar meetings in Szeged, while I was visiting Hungary.

However we have

Proposition 1. // every right ideal is two-sided in a semisimple semigroup S (in

particular S is a regular semigroup) then S is finitely convergent.

Proof. Let a G S. Then, by the characterization of semisimple semigroups in [2],

a G SaSaS. Since right ideals are two-sided, SaSaS C a(Sa)S Ç a2S and a G a2S.

So SaS Ç Sa2S and SaS = Sa2S. Also a G a2S implies a2 = a. a G a3S and as

before Sa2S = Sa3S. Then, by induction, r\™„lSa"S = SaS and hence S is

finitely convergent.

A semigroup S is concentric if C\^iSxnS = C(x) is constant for every x. This

constant is called the closet of S. One can find many examples of concentric

semigroups in [3]. A free semigroup generated by more than one element is one

such example. Tamura [3] proved that a semigroup S is concentric and finitely

convergent iff S is an ideal extension of a simple semigroup by a nil semigroup and

thus in this case S is semilattice-indecomposable. The question now arises whether

the concentric property is necessary and sufficient for a finitely convergent semi-

group to be semilattice-indecomposable, i.e., whether a finitely convergent semi-

group which is semilattice-indecomposable is concentric. It is not true, since finite

e-simple semigroups with zero-divisors are finitely convergent and semilattice-inde-

composable but not concentric. Now we shall provide an external characterization

and in some cases internal characterization of semilattice-indecomposable finitely
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convergent semigroups. An ideal A in S is completely prime if ab G A implies

either a G A or b G A. It is well-known that a semigroup is semilattice-indecom-

posable iff S has no completely prime ideals except itself.

For ready reference we shall quote the different characterizations of finitely

convergent semigroups given by Tamura [3, p. 245] in the following

Theorem 2. The following are equivalent on a semigroup S.

(i) S is finitely convergent.

(ii) For every a G S, there exists a natural number n such that a" G Sa"+'S for all

t > 0.
(iii) For every a G S, a" is intraregular for some natural number.

(iv) For every a in S, a" G C(a)for some natural number n.

Theorem 3. A finitely convergent semigroup S is semilattice-indecomposable iff for

every homomorphism f of S into the semigroup N of nonnegative integers under

multiplication, we have f = 0 or f(x) = 1 for every x G S.

Proof. Let S be semilattice-indecomposable. Suppose that / is a homomorphism

of S into AT. If a G S, then a" = xa"+ V for some natural number n by Theorem 2.

Then f(a") = f(xan+V) and therefore [f(a)]n = f(x)[f(a)]n+xf(y). Therefore/(a) =

0 or 1 = f(a)f(xy). The latter implies f(a) = 1. If there exists an element a in S

such that f(a) = 0, then /"'(O) = {x G S: f(x) = 0} is a nonempty completely

prime ideal. Since S is semilattice-indecomposable, /"'(O) = S and thus / = 0.

Therefore from the preceding we have, f(a) = 1 for every a in S if / ¥= 0.

Conversely let every / have the prior property. If S is not semilattice-indecomposa-

ble, then S contains a completely prime ideal P ¥= S. Define a function / by

f(a) = 0 if a G P and f(a) = 1 if a £ P. Since P is a completely prime ideal, / is a

homomorphism of S into N, which is not true by hypothesis. Thus S is semilattice-

indecomposable.

Remark. The above result is also true for any semisimple semigroup, which can

be shown by adopting the same proof.

A semigroup S is Archimedean if for every x, y in S, x" G SyS and ym G SxS

for some integers n and m. An ideal A in S is called prime if P and Q are ideals in

S such that PQ Q A, then either P <Z A or Q Q A. A semigroup S is called

ö*-simple if S has no proper prime ideals. Archimedean semigroups and ß*-sim-

ple semigroups are always semilattice-indecomposable. We now provide an interval

characterization for finitely convergent semigroups which belong to the previous

two subclasses of semilattice-indecomposable semigroups. An element x in S is

called intraregular if x G Sx2S.

Theorem 4. A finitely convergent semigroup is Archimedean iff S contains a

nonempty kernel K and all the intraregular elements of S belong to K. In this case S

is an ideal extension of a simple semigroup by a nil semigroup.

Proof. Let S be Archimedean. By Theorem 2, S contains intraregular elements.

Let a = xa2)' be an intraregular element. Then a = x(xa2yxa2y) ■ y G x2Sy2. By

induction, a G x"Sy"  for n > 2.  Since S is Archimedean, we can choose n
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sufficiently large such that x" and y" belong to any given ideal A. Hence a G A

and thus a e K. Assume that the kernel K be nonempty and every intraregular

element is contained in K. Consider any two elements x and v in S. By Theorem 2,

x" and.ym are intraregular for some natural numbers n and m. Therefore x" G K

Q S VS ' and ym G K Q S xxS ' by hypothesis. Thus S is Archimedean. Since for

any x & K and for any v G K, x" G SyS for some natural number n, S is clearly

an ideal extension of the simple semigroup K by a nil semigroup.

For right duo semigroups (semigroups in which every right ideal is two-sided)

and medial semigroups, the Archimedean property is equivalent to the semilattice-

indecomposable property. Moreover by Theorem 4 [4, p. 777] a semigroup is a

medial simple semigroup iff it is isomorphic to the direct product of an abelian

group and a rectangular band. Hence we have

Corollary 5. If S is a right duo or medial finitely convergent semigroup, then S is

semilattice-indecomposable iff the kernel K of S is nonempty and K contains all

intraregular elements. Moreover S is an ideal extension of the simple semigroup K by

a nil semigroup. But in the medial case, S is an ideal extension of the direct product of

an abelian group and a rectangular band by a nil semigroup.

Theorem 6. If S is a Q*-simple finitely convergent semigroup, then S contains a

nonempty kernel K such that S/K is a nil semigroup.

Proof. If a G S, then by Theorem 2 there exists a natural number m such that

am G Sam + 'S for any / > 0. Call am = x. Let T = {x, x2,. . . }. Suppose there

exists an ideal A not containing x. Clearly x G H "_25x'l5. Hence no power of x

belongs to A, i.e., An T = 0. Then by Zorn's lemma, there exists an ideal B D A

such that B is maximal along all ideals containing A with empty intersection with

T. We claim that B is a prime ideal. If B is not a prime ideal, then there exist ideals

L and M such that L £ B and M 2 B but LM Ç B. This implies that x" G L u

B and xm G M u B for some natural numbers m and n by the maximality of B.

Therefore xm+n G (L u fi)(M u B) ç B, which is absurd. Hence B is a prime

ideal different from S, which again contradicts that S is ß*-simple. Thus we can

assert that x belongs to every ideal, so that the kernel K is nonempty and

am = x G K. This implies S/K is nil.

The prior discussion yields the following structure theorems.

Theorem 7. Let S be a medial semigroup. Then S is finitely convergent iff S is a

semilattice of semigroups Sa, each Sa being an ideal extension of a direct product of an

abelian group and rectangular band by a nil semigroup.

Proof. By Corollary 2.13 of [1, p. 32] 5 is a semilattice of /V-classes Sa, where

each Sa is semilattice-indecomposable. Now we claim that S is finitely convergent

iff each Sa is finitely convergent. Let S be finitely convergent and a G Sa. Then

am = xam+2y for some natural number m by Theorem 2. If P is any completely

prime ideal, then xa or ay G P implies am G P and thus a & P. Clearly a G P

implies xa and ay belong to P. Hence xa and ay G Sa, which implies that Sa is

finitely convergent. The converse is obvious. Since S is a medial semigroup, Sa is
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also a medial semigroup. Hence by Corollary 5, Sa is an ideal extension of a direct

product of an abelian group and a rectangular band by a nil semigroup. For the

converse, it suffices to prove that if Sa is an ideal extension of a simple semigroup

A by a nil semigroup, then Sa is finitely convergent. If a G A, then a G Aa2A and

hence a G Saa2Sa, which implies that a is intraregular. If a G A, then a" G A and

therefore a" is intraregular as before. Thus Sa is finitely convergent by Theorem 2.

Corollary 8. A commutative semigroup S is finitely convergent iff S is a

semilattice of subsemigroups Sa, which are ideal extensions of groups by nil semigroups

or equivalently each Sa contains an idempotent.

In [3], Tamura reduced the study of concentric semigroups to that of concentric

semigroups with zero or empty closet and left open the questions of determining

the structure of latter semigroups. Now we describe these in terms of their ideal

structure.

Proposition 9. Let S be a concentric semigroup with empty closet (or zero closet if

S contains 0). Then the following are true.

(i) For every x (¥= 0) in S, x G Sx, x £ xS and x £ SxS. No (nonzero) element is

right regular, left regular, intraregular, regular and an idempotent.

(ii) If S = S2, then S has no maximal left or right or two-sided ideals. If S ¥° S2,

then S contains maximal left, right and two-sided ideals; S2 is the intersection of all

maximal left ideals, intersection of all maximal right ideals and also maximal

two-sided ideals. Every maximal one-sided ideal is two-sided and its complement

consists of a single element.

(iii) Every ideal A in S is also concentric with empty (or zero) closet.

(iv) If S does not contain 0, then S has no maximal one-sided or two-sided ideals. If

S contains 0, then every minimal one-sided or two-sided ideal A satisfies the property

A2 = 0.

Proof, (i) If x G SxS, then x = sxxtx for some sx and tx in S and thus

x = s2xt2 G SsxS. By induction, we have x G Ss"S = 0 (or zero). Hence x G

SxS. The other conclusions can be proved in a similar fashion.

(ii) If M is a maximal left ideal, then there exists a nonzero x in M. So

S = M u 5 xx. If S = S2, then S = S2 = M u Sx and hence x G Sx, which is a

contradiction by (i). Thus 5 contains no maximal left ideals. Similarly we can prove

that S contains no maximal right and two-sided ideals. If S ¥= S2, clearly for any

x G S \ S2, S \ x is a maximal one-sided and also two-sided ideal. Let S ¥= S2 and

L be the intersection of all maximal left ideals. If (£L\ S2, then 5 \ / is a

maximal left ideal and hence contains t. This contradiction proves L G S2. If

t G S2\ L, then S = M u Sxt for some maximal left ideal M which does not

contain t. But S2 = SM u S2t u St, which implies t G St, which is not true by (i).

Hence S2 G L and therefore L = S2. Similar proof yields that S2 is the intersec-

tion of all maximal right ideals and also the intersection of all maximal ideals. To

show that the complement of every maximal left ideal consists of a single element,

let us assume that there exists a maximal left ideal M not containing two distinct
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elements x and y. Then S=M\jx\jSx = M\jy\j Sy. Hence x Œ Sy Q Sx,

which is not true by (i). Similar proof can be given in the case of maximal right

ideals. Every maximal left ideal M is two-sided since M is of the form S \ x for

some x G S \ S2 and thus if mx £ M for some m in M, then x = mx, which is not

true by (i) and the proof for maximal right ideals is similar.

(iii) If A is an ideal of S, then x G n ™_xAa"A for a G A implies x G Sa"S for

every natural number n. Hence the conclusion is evident.

(iv) It suffices to prove the results for minimal left ideals since similar proof can

be given in other cases. If S does not contain 0 and if A is a minimal left ideal, then

for any x G A, x G A = Sx, which is not true by (i). Let 5 contain 0 and A be a

minimal left ideal. If A2 ̂  0, then A2 = A by niinimality of A. If x E A and

x =?*= 0, then x u Sx ¥= 0, so that A = x u Sx. Hence xë(jcu Sx)(x u Sx),

which implies x G Sx, contradicting (i).

Theorem 10. Let S be a semigroup which is not simple (or 0-simple if S contains

0). Then S is a concentric semigroup with empty (or zero) closet iff S is one of the

following.

(i) S is a globally idempotent semigroup with no maximal ideals such that every

proper ideal is a concentric subsemigroup with empty (or zero) closet.

(ii) S is a nonglobally idempotent semigroup such that S2 is a concentric semigroup

with empty (or zero) closet.

Proof. If 5 is a concentric semigroup with empty (or zero) closet, then S is one

of the previously prescribed forms by Proposition 9. Conversely, let S be the form

(i). Suppose that x G S and v G D n=xSx"S. Since S is not simple (or 0-simple)

and since S contains no maximal ideals, S = U Aa, where {Aa} is the set of all

proper ideals. Hence x belongs to some Aa. Now v G Sxx"xS Ç Aax"Aa. Since Aa

is a concentric semigroup with empty (or zero) closet, either the prior fact is

inadmissible or v = 0 if S contains 0. Thus S is a concentric semigroup with empty

(or zero) closet. Suppose now that S is of the form (ii). Let x G S. Then

y G n ñ-\Sx"s implies y G S2(x2)"S2 for every natural number n. Since S2 is

concentric with empty (or zero) closet, CÏ ̂ xSx"S = 0 (or zero). Thus the conclu-

sion is evident.
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