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AN ADDITIVE REPRESENTATION FOR REAL FUNCTIONS

ON THE PRODUCT OF A SET AND A LATTICE1

W. J. R. EPLETT

Abstract. Given a real-valued function defined on the product of an arbitrary set

and a finite lattice, a necessary and sufficient condition is obtained for the

existence of an additive representation for the function in terms of functions on

sublattices of the original lattice. This additive representation is of the nature of a

recurrence and provides a tool for further analysis of the function. An example is

given for a case where the lattice concerned is the lattice of partitions of a finite set.

The main theorem of this paper generalizes a result due to Fishburn corresponding

to the lattice being the lattice of subsets of a finite set.

1. Introduction. Suppose that Xx, . .. , Xm are m nonempty (arbitrary) sets,

/„...,/„ are nonempty subsets of {1,. . . , m) and g is a real-valued function on

the product set X = IITLi X¡. The number of elements in a finite set S will be

denoted by \S\. Fishburn [1] has proved the following result.

Example 1. There exist real-valued functions gj on II,e/ X¡, 1 < j < n, such that

for each x G X

g(x) = Î 8j(xJ), (1)
y-i

where xJ = (x,),ey, if and only if for each x G X

(2)
s

where x[I] is defined in terms of some fixed x° G X as the m-tuple whose rth

coordinate is x¡ if i G. I and xf if / £ / and the summation in (2) is over nonempty

S c{l, ...,«}.
It is the purpose of this note to generalize Example 1. Notice that (2) involves

summation over members of the lattice of subsets of {1,...,»} and also uses the

Möbius function for that lattice. This suggests the possibility of generalizing

Fishburn's result to cover other lattices.

2. The additive representation theorem. Suppose that £ is a finite lattice having a

least element 0 and let us denote by & the set of atoms (or points) of E. Let % be

an arbitrary set. The real-valued function /on % X £ is said to have the

interchange property under P if there exists a mapping P: % X £ -» % which for

each x G % and :6Ê takes (x, z) to xz G % in such a way that
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f(x, z\jy)= f(xz, y) = f(xizVy), 0) (3)

for ail .y G £. In particular, therefore, f(x, z) = f(xz, 0).

For a G & define the sublattice £a as the elements of £ which are of the form

z\J a (z G £). The following theorem about functions with the interchange

property can be proved.

Theorem 2. For each x G 9C, z G £, the function f having the interchange

property under P can be expressed as

/(*, *) -  2 faix, z V a) (4)

wAere for each  a G (£, fa  is  a real-valued function on  % X £0  satisfying the

interchange property under Pa, the restriction of P to % X £a, if and only if for each

x G %

2 /i(0, z)/(x, z) = 0, (5)
z>0

where /i ¿y //¡e Möbius function of the lattice £ (as defined in Rota [2]).

Proof. Suppose that (4) is true. Then, for given x G % and a G &,

2 ju(0, z)/a(*, z V a) =   S /a(*».v)    2    f*(0, *) = 0
z>0 yeña z\Ja-y

because 2zVa=J, ju(0, z) = 0 by the corollary to Proposition 4 of §5 of [2]. Clearly

(5) now follows from (4).

Suppose that (5) holds. Define a rank function for S by a bijection r mapping â

to {1, ... , \&\}. For each a G & define

Sa = {z G £: z > a and if z > b,b G &, then r(è) < /-(a)}-

These are disjoint sets whose union is £\{0}. Now, by (5), for each x G %

f(x, 0) = - 2 MO, y)f(x, y) = -  2     2  M0,y)/(*, v), (6)
y>0 oEÄ   ^eS,,

so that putting fa(x, a) = - 2^eS ¡i(0, y)f(x, y), (4) will be satisfied when z = 0.

If z G £, then/a(;c, z\J a) can be defined by

fa(x,z\/a)=-   2   M0,v)/(xz,^).

In order to verify that/, is a well-defined function on % X £a, we have to show

that if u \/ a = v \y a, then/a(x, u\j a) = fa(x, v V d). However,

fa(x,uVa)=-   S    ix(0, y)f(xu, y) = -   2   m(0, y)f(x, u V >-)

= -   S    ¿i(0,v)/(x,t;Vv)

(because y > a, it follows that u\j y = v\y y)

= fa(x,Wa),

so that fa is indeed well defined. The additive representation (4) follows from (3)
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and (6). The definition of the functions fa, a G &, ensures that for x G % and

v, z G £a the relationship fa(x, y V z) = fa(xz, v) = /0(x(>,Vz), a) holds. This com-

pletes the proof of the theorem.

Some further comments about the theorem seem appropriate. The additive

representation we have described in Theorem 2 has the form of a recurrence. Each

function/, (a 6 Ä) is defined on a sublattice of £ and this function also has the

interchange property. So the functions used in the representation may have an

additive representation in their turn.

As demonstrated in [1] for Example 1, the functions /, defined in the proof of

Theorem 2 are not necessarily the only ones for which (4) holds. In the light of the

remarks of the preceding paragraph they are, however, particularly appropriate.

Finally notice that we could without difficulty alter lattice to semilattice

throughout the discussion.

3. Applications of the theorem. First we shall verify that Example 1 is indeed a

special case of Theorem 2. In the statement of the theorem, take % = X = 117-1 X¡

and £ as the lattice of subsets of (1, . . . , «} ordered by inclusion with the join

operation defined by union of sets. The atoms of £ are the sets {/}, 1 < i < n.

If g is a real-valued function on X, then define/(x, z) = g(x[C\Jez If\) for z ^ 0

(the empty set) and/(jt, 0) = g(x). Then (3) holds for/(x, z) with xz = x[nJez •/,]

(z ¥= 0) and x0 = x. Fishburn's result is obtained from Theorem 2 by defining

gj(xJ) = /rwherey = {j}, 1 < j < n. For this to be a projection it must satisfy the

condition that if x[Ij] = y[Ij], then fj(x,j) = fj(y,j). This condition is satisfied

because fj(x, j) = fj(xj,j) = fj(x[Ij],j).

As a novel application of Theorem 2-although the example is constructed along

similar lines to Example 1—let us take £ to be the lattice n„ of partitions of the set

{1,..., »}. The partitions are ordered by refinement with the join of two parti-

tions defined as the least partition of which Ux and II2 are both refinements. The

partition consisting of n singletons is then the least element of the lattice.

Consider a function x which maps the blocks of some partition in n„ to the real

numbers. The class of such functions will be denoted by % and the partition

mapped by a particular x G % will be denoted by U(x). The sum of x G % over

a G Tln is defined to be the function xa G 9C which maps the blocks of a V ü(jc)

to the real numbers as follows:

if B(a V n(x)) denotes a block of a V n(x), then xa(B(a V n(x))

= 2TeSi x(t)

where SB = {blocks of U(x) contained in B(a V n(x))}.

If g is a real-valued function on %, then define f(x, a) = g(xa) for x G %,

a G n„. It is easy to verify that/ defined in this way has the interchange property

and so necessary and sufficient conditions for an additive representation for/(x, a)

may be obtained from Theorem 2. The atoms of Iln are the \n(n — 1) partitions

consisting of a single block containing two elements with the remaining blocks

being singletons. The Möbius function for IIn required by condition (5) of

Theorem 2 is given explicitly in [2] and will not be repeated here.
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Example 3. The representation of f(x, a) obtained from Theorem 2 can be

written as

Ax, a)-     2      M*,o% (7)
l<t<J<n

where a° is the partition of a set of n — 1 elements obtained by combining the

blocks of a containing i and j (if they are in different blocks) and identifying i and

/ The functions on the right-hand side of (7) are therefore essentially functions on

n„_,, providing a recurrence with which to study/.
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