ON THE WEAK RADON-NIKODYM PROPERTY

NASSIF GHOUSSOUB AND ELIAS SAAB

ABSTRACT. It is shown that in a Banach lattice the notions of the Radon-Nikodym property and the weak Randon-Nikodym property coincide. A problem of H. P. Lotz is solved affirmatively, namely, if the dual Y^* of a Banach space Y is complemented in a Banach lattice E and if I^1 does not embed into Y then Y^* has the Radon-Nikodym property.

In [10] Musial introduced the notion of the weak Radon-Nikodym property. In this paper we are going to show that in a Banach lattice the notions of the weak Radon-Nikodym property and the Radon-Nikodym property coincide and that if Y^* is the dual of a Banach space Y not containing I^1 and Y^* is complemented in a Banach lattice E then Y^* has the Radon-Nikodym property. This solves affirmatively a conjecture of H. P. Lotz [9].

DEFINITION 1. Let E be a Banach space and let (T, Σ, λ) be a probability space. A function $f: T \to E$ is Pettis-integrable if

- (i) for every $x^* \in E^*$ the map $t \to x^* f(t)$ is λ -measurable and λ -integrable and
- (ii) for every $A \in \Sigma$ there is x_A in E such that $x^*(x_A) = \int_A x^* f(t) d\lambda$ for every x^* in E^* . In this case we write $x_A = \text{Pettis-} \int_A f d\lambda$.

DEFINITION 2. Let E be a Banach space and let (T, Σ, λ) be a probability space. A function $f: T \to E$ is Bochner-integrable if there exists a sequence (f_n) of simple functions such that

- (i) $\lim_{n} ||f(t) f_n(t)|| = 0$ for λ -almost all $t \in T$ and
- (ii) $\lim_{n \to T} ||f f_n|| d\lambda = 0$.

It is easy to see that one can define

Bochner-
$$\int_{A} f dP = \lim_{n} \int_{A} f_{n} d\lambda$$

for each $A \in \Sigma$. This definition is independent of the choice of the sequence (f_n) . For more details see [1, Chapter II].

DEFINITION 3. A Banach space has the Radon-Nikodym property (RNP) (resp. the weak Radon-Nikodym property (WRNP)) if for every complete probability space (T, Σ, λ) and every vector measure $m: \Sigma \to E$ such that $||m(A)|| < \lambda(A)$ for every $A \in \Sigma$ there exists a Bochner-integrable (resp. Pettis-integrable) function $f: T \to E$ such that $m(A) = \text{Bochner-} \int_A f \, d\lambda$ (resp. $m(A) = \text{Pettis-} \int_A f \, d\lambda$) for every $A \in \Sigma$.

Received by the editors October 19, 1979.

AMS (MOS) subject classifications (1970). Primary 46G10, 46B22.

Key words and phrases. (Weak) Radon-Nikodym property, Banach lattice.

There are Banach spaces with the WRNP and without the RNP and contrary to the RNP the WRNP is not hereditary with respect to subspaces [10]. However we have the following.

PROPOSITION 4. Let X be a Banach space having the WRNP. Then neither c_0 nor L^1 can be embedded in X.

PROOF. Suppose that c_0 embeds in X and let $T: c_0 \to X$ be this embedding. Let Σ be the σ -algebra of all Lebesgue measurable subsets of [0, 1] and λ be the Lebesgue measure.

Define a vector measure $G: \Sigma \to c_0$ by

$$G(A) = \left(\int_A \sin(2^n \pi t) \ d\lambda(t)\right).$$

According to the Riemann-Lebesgue lemma, the measure G has its values in c_0 and one has that $||G(A)|| \le \lambda(A)$ for every A in Σ . Define now a vector measure $F: \Sigma \to X$ by F(A) = T(G(A)) for every A in Σ . Hence $||F(A)|| \le ||T||\lambda(A)$ for every A in Σ . Since X has the WRNP there exists $f: [0, 1] \to X$ Pettis-integrable such that

$$F(A) = \text{Pettis-} \int_{A} f \, d\lambda.$$

An appeal to [3, 3J] shows that the set $K = \{F(A) = T(G(A)); A \in \Sigma\}$ is relatively compact in X, therefore the set $H = \{G(A); A \in \Sigma\}$ is relatively compact in c_0 because T is an isomorphism, so we will have a contradiction if we can prove that H is not relatively compact in c_0 .

Suppose that H is relatively compact in c_0 . Using a well-known characterization of compact subsets of c_0 we see that

$$\lim_{n} \sup_{A \in \Sigma} \left| \int_{A} \sin(2^{n}\pi t) \ d\lambda(t) \right| = 0, \tag{*}$$

but

$$a_n = \sup_{A \in \Sigma} \left| \int_A \sin(2^n \pi t) \ d(t) \right| > \frac{1}{2} \int_0^1 |\sin(2^n \pi t)| \ d\lambda(t).$$

Let $A_n = \{t \in [0, 1]; |\sin(2^n \pi t)| > 1/\sqrt{2} \};$ then $\lambda(A_n) = \frac{1}{4}$, hence $a_n > (1/2)(1/\sqrt{2})(1/4) = 1/8\sqrt{2}$ and this contradicts (*).

For the L^1 part, use the same idea by considering $G(A) = 1_A$ and the well-known fact that $\{G(A); A \in \Sigma\}$ is not relatively compact in L^1 [2, p. 261].

It was pointed out to us by the referee that the fact that c_0 cannot be embedded in a Banach space with the WRNP was also obtained by Janicka [7] then by Musial [11] using martingales.

We shall say that a Banach space E has the separable complementation property if for every separable subspace Z in E there exists a separable subspace Y containing Z and complemented in E.

The fact that c_0 cannot be embedded in a space having the WRNP is essential in the following theorem.

THEOREM 5. Let E be a Banach lattice. If E has the WRNP then E has the RNP.

PROOF. By Proposition 2, the space c_0 cannot be embedded in E and therefore E is weakly sequentially complete [8, p. 37], and hence E is an order continuous Banach lattice. By Kakutani's theorem [8, p. 9] there is a family (possibly uncountable) of complemented subspaces X_{α} of E, each of them having a weak order unit such that $E = \sum_{\alpha} X_{\alpha}$. In addition if E is a separable subspace of E, then an E can be chosen so that E contains E. Let E be a separable subspace of E containing E and complemented in E can be done because E is WCG; this means that E is complemented in E, hence E has the separable complementation property. Apply [10, Theorem 1] to finish the proof.

In the proof of the above theorem we saw that an order continuous Banach lattice has the separable complementation property. This fact will be used later.

In [12] Musial and Ryll-Nardzewski proved the following theorem by a different method.

THEOREM 6 (MUSIAL AND RYLL-NARDZEWSKI). If the dual X^* of a Banach space X has the WRNP, then l^1 does not embed into X.

PROOF. If l^1 embeds into X, then by [4, Proposition 1], L^1 embeds into X^* , but this is impossible by Proposition 4.

The converse of Theorem 6 is true and is due to Janicka [7] and Bourgain (unpublished). It is a consequence of [6] and [14]. Combining this with Theorem 5 yields the following result of H. P. Lotz [9], [1].

THEOREM 7 (LOTZ). Let E be a Banach lattice; then E^* has the RNP if and only if l^1 does not embed into E.

PROPOSITION 8. Let X be a Banach space complemented in a Banach lattice E. If X has the WRNP, then X has the RNP.

PROOF. If X does have the WRNP, then c_0 does not embed in X; by [8, p. 36] X is isomorphic to a subspace of an order continuous Banach lattice. Therefore X has the RNP.

The following proposition answers positively a problem of H. P. Lotz [9, Problem 4].

PROPOSITION 9. Let X^* be the dual of a Banach space X not containing a subspace isomorphic to l^1 and suppose that X^* is complemented in a Banach lattice E. Then X^* has the RNP.

PROOF. By [7], the space X^* has the WRNP. Apply Proposition 8 to finish the proof.

In [13] Pełczynski proved under a special assumption which was later removed by Hagler [5] that if L^1 does embed in E^* then l^1 embeds into E.

The following theorem gives a proof of the above result via the WRNP.

THEOREM 10. If L^1 does embed in the dual E^* of a Banach space E, then l^1 does embed in E.

PROOF. If L^1 does embed in E^* then E^* will not have the WRNP (Proposition 4) and therefore l^1 embeds into E.

REFERENCES

- 1. J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.L. 1977.
- 2. D. H. Fremlin, Pointwise compact subsets of measurable functions, Manuscripta Math. 15 (1975), 219-242.
- 3. D. H. Fremlin and M. Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), 117-142.
- 4. A. Grothendieck, Une caractérisation vectorielle metrique des espaces L¹, Canad. J. Math. 7 (1953), 552-561.
 - 5. J. Hagler, Some more Banach spaces which contain 11, Studia Math. 46 (1973), 35-42.
- 6. R. Haydon, Some more characterizations of Banach spaces containing l¹, Math. Proc. Cambridge Philos. Soc. 80 (1976), 269-276.
- 7. L. Janicka, Własności typu Radona-Nikodyma dla przestrzeni Banacha, Thesis, Wroclaw, Poland, 1978
- 8. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Springer-Verlag, Berlin and New York, 1979.
 - 9. H. P. Lotz, The Radon-Nikodym property in Banach lattices (preprint).
 - 10. K. Musial, The weak Radon-Nikodym property, Studia Math. 64 (1978), 151-174.
 - 11. _____, Martingales of Pettis integrable functions, Lecture Notes in Math. (to appear).
- 12. K. Musial and C. Ryll-Nardzewski, Liftings of vector measures and their applications to RNP and WRNP, Lecture Notes in Math., vol. 645, Springer-Verlag, Berlin and New York, 1977.
 - 13. A. Pelczynski, On Banach spaces containing L¹(μ), Studia Math. 30 (1968), 231-246.
- 14. H. von Weizsacker, Strong measurability, liftings and the Choquet-Edgar theorem, Lecture Notes in Math., vol. 645, Springer-Verlag, Berlin and New York, 1977.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, B. C. V6T 1Y4, CANADA