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ON THE WEAK RADON-NIKODYM PROPERTY

NASSIF GHOUSSOUB AND ELIAS SAAB

Abstract. It is shown that in a Banach lattice the notions of the Radon-Nikodym

property and the weak Randon-Nikodym property coincide. A problem of H. P.

Lote is solved affirmatively, namely, if the dual Y* of a Banach space Y is

complemented in a Banach lattice E and if / ' does not embed into Y then Y* has

the Radon-Nikodym property.

In [10] Musial introduced the notion of the weak Radon-Nikodym property. In

this paper we are going to show that in a Banach lattice the notions of the weak

Radon-Nikodym property and the Radon-Nikodym property coincide and that if

Y* is the dual of a Banach space Y not containing / ' and Y * is complemented in a

Banach lattice E then Y* has the Radon-Nikodym property. This solves affirma-

tively a conjecture of H. P. Lotz [9].

Definition 1. Let F be a Banach space and let (T, 2, X) be a probability space.

A function/: F—» E is Pettis-integrable if

(i) for every x* G E* the map / -> x*f(t) is X-measurable and X-integrable and

(ii) for every A G 2 there is xA in E such that x*(x^) = JA x*f(t) dX for every x*

in E*. In this case we write xA = Pettis-JAfdX.

Definition 2. Let F be a Banach space and let (T, 2, X) be a probability space.

A function /: T —» E is Bochner-integrable if there exists a sequence (/„) of simple

functions such that

(i) Um„||/(r) - /„(OH = 0 for X-almost all t G Fand

(ii)lim„/r||/-/J|¿X = 0.
It is easy to see that one can define

Bochner- f f dP = Urn f /„ dX
ja "   JA

for each A G2Z. This definition is independent of the choice of the sequence (/„).

For more details see [1, Chapter II].

Definition 3. A Banach space has the Radon-Nikodym property (RNP) (resp.

the weak Radon-Nikodym property (WRNP)) if for every complete probabihty

space (T, 2, X) and every vector measure m: 2 -» E such that ||m(/l)|| < X(A) for

every A G?. there exists a Bochner-integrable (resp. Pettis-integrable) function /:

T'-» E such that m(A) = Bochner-/^ fdX (resp. m(A) = Pettis-fAfdX) for every

A 6 2.
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There are Banach spaces with the WRNP and without the RNP and contrary to

the RNP the WRNP is not hereditary with respect to subspaces [10]. However we

have the following.

Proposition 4. Let X be a Banach space having the WRNP. Then neither c0 nor

L1 can be embedded in X.

Proof. Suppose that c0 embeds in X and let T: c0—> X be this embedding. Let 2

be the a-algebra of all Lebesgue measurable subsets of [0, 1] and X be the Lebesgue

measure.

Define a vector measure G: 2 -> c0 by

G(A) = I f sin(2Vi) dX(t)\.

According to the Riemann-Lebesgue lemma, the measure G has its values in c0 and

one has that ||G(/1)|| < X(A) for every A in 2. Define now a vector measure F:

2 -► X by F(A) = T(G(A)) for every A in 2. Hence ||F(^)|| < || T\\X(A) for every

A in 2. Since X has the WRNP there exists/: [0, 1] -► X Pettis-integrable such that

F(A) = ?ettis-ffdX.

An appeal to [3, 3J] shows that the set K = {F(A) = 7XG04)); A G 2} is

relatively compact in X, therefore the set H = {G(A); A G 2} is relatively com-

pact in c0 because T is an isomorphism, so we will have a contradiction if we can

prove that H is not relatively compact in c0.

Suppose that H is relatively compact in c0. Using a well-known characterization

of compact subsets of c0 we see that

1 = 0, (*)lim   sup
"     AeX

f sin(2"rrt) dX(t)

but

an = sup
AeX

f sin(2V/) d(t) > \ C\sm(2%t)\ dX(t).
JA 2 J0

Let A„ = {t G [0, 1]; |sin(2n7rí)| > 1/V2 }; then X(A„) = \, hence

a„ > (1/2)(1/V2 )(l/4) = 1/8V2 and this contradicts (*)•

For the L1 part, use the same idea by considering G(A) = lA and the weU-known

fact that {G(A); A G 2} is not relatively compact in L1 [2, p. 261].

It was pointed out to us by the referee that the fact that c0 cannot be embedded

in a Banach space with the WRNP was also obtained by Janicka [7] then by

Musial [11] using martingales.

We shall say that a Banach space E has the separable complementation property

if for every separable subspace Z in E there exists a separable subspace Y

containing Z and complemented in E.

The fact that c0 cannot be embedded in a space having the WRNP is essential in

the following theorem.

Theorem 5. Let E be a Banach lattice. If E has the WRNP then E has the RNP.
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Proof. By Proposition 2, the space c0 cannot be embedded in E and therefore E

is weakly sequentially complete [8, p. 37], and hence E is an order continuous

Banach lattice. By Kakutani's theorem [8, p. 9] there is a family (possibly uncoun-

table) of complemented subspaces Xa of E, each of them having a weak order unit

such that E = 2a Xa. In addition if Z is a separable subspace of X, then an a0 can

be chosen so that X contains Z. Let y be a separable subspace of Xao containing

Z and complemented in X (this can be done because Xao is WCG); this means

that Y is complemented in E, hence E has the separable complementation prop-

erty. Apply [10, Theorem 1] to finish the proof.

In the proof of the above theorem we saw that an order continuous Banach

lattice has the separable complementation property. This fact will be used later.

In [12] Musial and Ryll-Nardzewski proved the following theorem by a different

method.

Theorem 6 (Musial and Ryll-Nardzewski). If the dual X* of a Banach space

X has the WRNP, then I1 does not embed into X.

Proof. If /' embeds into X, then by [4, Proposition 1], Lx embeds into X*, but

this is impossible by Proposition 4.

The converse of Theorem 6 is true and is due to Janicka [7] and Bourgain

(unpublished). It is a consequence of [6] and [14]. Combining this with Theorem 5

yields the following result of H. P. Lotz [9], [1].

Theorem 7 (Lotz). Let E be a Banach lattice; then E* has the RNP if and only if

I ' does not embed into E.

Proposition 8. Let X be a Banach space complemented in a Banach lattice E.IfX

has the WRNP, then X has the RNP.

Proof. If X does have the WRNP, then c0 does not embed in X; by [8, p. 36] X

is isomorphic to a subspace of an order continuous Banach lattice. Therefore X has

the RNP.

The following proposition answers positively a problem of H. P. Lotz [9,

Problem 4].

Proposition 9. Let X* be the dual of a Banach space X not containing a subspace

isomorphic to I ' and suppose that X* is complemented in a Banach lattice E. Then X*

has the RNP.

Proof. By [7], the space X* has the WRNP. Apply Proposition 8 to finish the

proof.

In [13] Pekzynski proved under a special assumption which was later removed

by Hagler [5] that if L1 does embed in E* then ll embeds into E.

The following theorem gives a proof of the above result via the WRNP.

Theorem 10. If L1 does embed in the dual E* of a Banach space E, then /' does

embed in E.
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Proof. If L1 does embed in E* then E* wiU not have the WRNP (Proposition 4)

and therefore / ' embeds into E.
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