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SOME PROPERTIES OF CLOSED 1-FORMS

ON A SPECIAL RIEMANNIAN MANIFOLD

GR. TSAGAS

Abstract. Let M be a compact Riemannian manifold whose sectional curvature is

strictly negative; then every closed 1-form on M has a singularity.

1. Introduction. Let M be a compact Riemannian manifold. If we assume that the

dimension of the manifold is even and the sectional curvature of M is negative

5-pinched, where 8 > (n2 + 5n + T)/(n2 + 6« + 14), then every harmonic 1-form

on M has a singularity [9], where n = dim M.

The main purpose of the present paper is to generalize the above result. Now this

result can be stated as follows. Let M be a compact Riemannian manifold whose

sectional curvature is strictly negative; then every closed 1-form on M has a

singularity.

2. We consider a compact Riemannian manifold M, whose sectional curvature is

strictly negative. We assume that there is a closed 1-form w on M without

singularities. Then from [10, p. 153] we obtain that the manifold is the total space

of a fibre bundle whose base manifold is a circle, that is

F^M^S. (2.1)

From this fibre bundle we have the following exact sequence [5, p. 153]:

P+ d i P+
• •  -> t»+ i(S> bQ) -5- trn(F, e0) A trn(M, e0) -► trn(S, b0)

~*   • • • '-» irx(S, b0) -4 tt0(F, e0) -4 tt0(M, e),

where b0 G S is a basic point and the fibre F = p~\b0) is not empty, which is

called a basic fibre and choose e0 G F as a basic point.

From the above exact sequence we obtain

ir2(S, b0) % 7TX(F, e) 5 irx(M, e0) * ^(S, b0) £ tt0(F, e0). (2.2)

Since trx(S, b0) = Z, tr2(S, b0) = 0 and we can assume itq(F, e) = 0, [3], then the

sequence (2.2) takes the form:

0^W,(F, e)^.irx(M, eo)P-Xz^0. (2.3)

From the exact sequence (2.3) we conclude that the mapping im is injective and

the mapping/», is surjective.
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The exact sequence (2.3) can be written

Gx^gAg3, (2.4)

where Gx = irx(F, e), G2 = ttx(M, e0), G3 = Z, im = fx andp„ = f2.

We assume that F is not simply connected. That means Gx = irx(F, e) is not

trivial.
From the exact sequence (2.4) and since /, is injective and f2 surjective we can

consider that Gx is a normal subgroup of G2 and the quotient group G2/Gx is

isomorphic to G3.

Since G3 is an infinite cycle we obtain that G2 considered as a set has the form

( . . . , a~2Gx, a~lGx, Gx, aGx, a2Gx,...),

or the form

( . . ., Gxa~2, Gxa\ Gx, Gxa, Gxa2,.. . ),

where a is an element of the group G2.

Since Gx is a normal subgroup of G2 we have a'xGxa = Gx; that is, there is an

element a of G2 such that a~lGxa n Gx = G, D {e} where e is the identity element

of G2.

The following proposition is known [1, p. 46].

Proposition (2.1). Let M be a compact Riemannian manifold whose sectional

curvature is strictly negative. If G = trx(M, m, y) is a ray subgroup of irx(M, m) and

j8 Í G, then ßGß~l n G = {e}, where e is the identity element of mx(M, m).

From the above and Proposition (2.1) we have a contradiction. We have reached

a contradiction because we have assumed that the Riemannian manifold M admits

a closed 1-form without singularities. If F is simply connected, then irx(F, e) is

trivial and G2 = wx(M, e0) = Z, which is not true for a compact manifold with

negative sectional curvature [7].

Therefore we obtain the theorem.

Theorem (2.1). Let M be a compact Riemannian manifold whose sectional curva-

ture is strictly negative. Then every closed I-form on M has at least one singularity.

From this theorem we have the corollary.

Corollary (2.1). Let M be a compact Riemannian manifold whose sectional

curvature is strictly negative. Then every harmonic I-form on M has at least one

singularity.
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