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a-COHERENT CONTINUA ARE

HEREDITARILY LOCALLY CONNECTED

M. R. HAGAN AND W. S. MAHAVIER1

Abstract. A a-coherent continuum is one in which every descending sequence of

connected sets has a connected intersection. In this paper it is proved that such

continua are hereditarily locally connnected. An example is given to show that the

converse is not true.

1. Introduction. A topological space is called a-coherent if the intersection of

evey descending sequence of connected sets is connected. This concept was

introduced in [1] and used as a condition on the domain of a real-valued function

to obtain monotonicity. In [2] the concept was used in the following theorem. If /:

A"-> y is a monotone connected function from the locally connected metric

continuum X onto the a-coherent metric continuum Y, then / is continuous. In the

same paper it was conjectured that if X and Y are hereditarily locally connected

metric continua, then such a function / must be continuous. This is still unresolved

and it is natural to investigate the relationship between a-coherence and hereditary

local connectivity for metric continua. In [2] an example was given to show that an

hereditarily locally connected metric continuum need not be a-coherent and

Example 1 below shows that even a regular continuum may fail to be a-coherent. It

is an open question whether a a-coherent continuum must be regular. In this paper

it is shown that a a-coherent continuum must be hereditarily locally connected.

The reader is referred to [4] and [5] for definition of terms not given here.

2. Results. The following lemmas establish that a a-coherent metric continuum is

hereditarily arcwise connected, a result which is used in the proof of the main

theorem.

Lemma I. If X is a compact a-coherent metric continuum, then X is hereditarily

decomposable.

The proof, being straightforward, is omitted.

Lemma 2. If X is a compact a-coherent metric continuum, then X is hereditarily

arcwise connected.
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Proof, let /? and a be distinct points of X and M an irreducible subcontinuum

joining/? and q. Since M is hereditarily decomposable, Theorem 2.2 of [3] implies

there is a monotone continuous function g: M —» [0, 1] such that g(p) = 0 and

g(p) = 1. It will be shown that g is one-to-one and hence M is an arc. Let x be in

(0, 1) and assume a and b are distinct points of g~l(x). Choose a sequence {*„}"_,

in (0, 1) such that for each n, xn <xn+x < x, and such that limit xn = x. If

C„ = g~'([*„, x)) u {a, b} for n > 1, then {C„}"_, is a descending sequence of

connected sets such that H™_i C„ = {a, Z?} which is not connected. This con-

tradicts JÍ being a-coherent and hence g~l(x) must be a singleton set. A similar

result is obtained if x = 0 or x = 1. Thus g is one-to-one and M is an arc.

Since a-coherence is an hereditary property, the conclusion of the lemma follows.

The following result is the principal theorem of the paper.

Theorem. If X is a compact, a-coherent continuum, then X is locally connected.

Actually, the following slightly stronger theorem is proved from which the

principal theorem stated above follows.

Theorem. If X is a compact, a-coherent continuum, then X contains no sequence of

mutually disjoint continua {M¡}f=x converging to a nondegenerate continuum M such

that M — U/>0 M¡ is uncountable.

Proof. Assume the contrary and suppose X contains a sequence {M¡}f_x of

mutually disjoint continua converging to a nondegenerate continuum M such that

M — U ,>o A/,- is uncountable. In this argument an arc may be a singleton set and

by an arc from a set H to a set K is meant an ordered arc with first point in H, last

point in K, no interior point in H u K and which is degenerate if it contains a

point of H n K. By Lemma 2, X is arcwise connected so there is a sequence

{ßi)T-\ sucn that for each positive integer n, ßn is an arc from M„ to M. Define

inductively a sequence of arcs such that a, = /?, and for each integer n > 1, a„ is a

subarc of ß„ from Mn to M u U "J,1 a,. Note that if / and / are positive integers,

i ¥^j, then a, ¥= Oj. Let A = U,>0{ß,}- We next define a finite sequence of

subcollections of A with union A. Let A\ = {a,} and let Á\ denote the set of all

arcs in A — A\ with last point in a,. Continue to define a sequence {/ti}°L, of

subcollections of A such that for each positive integer n > I, A" is the set of all

arcs in A — U7-i A\ with last point in a member of Ax~\ Let ,4, = Ui>0A¡. If

A = Ax, then the process terminates. If not, then let n, denote the least positive

integer/ such that a is in A — Ax, let A2 = {a„ }, and, as before, define a sequence

{Ai}T-\ sucn that for each positive integer n > 1, A2 is the set of all arcs in

A — \J"~l A2 with last point in some member of A2~x. Next define A2 =

UI>0 A2 and if A = Ax u A2, then our process is complete. Otherwise we define

n2 as the least positive integer/ such that anj is in A — (Ax u A^ and in a similar

manner define A3. We next show that there is a positive integer N such that

A = U ¡L i A¡ so the process must terminate. If the process does not terminate then

there is determined an infinite sequence {a„,}^., of mutually disjoint arcs, each

having its last point in M. Since M — U (>0 M,  is uncountable and for each
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positive integer /, a n M is degenerate, then there are two points x and v in

M - U(>o (M u a„). For each positive integer k, let Lk = U ,"*(A^ U a^) U

{*} U { v} and note that Lk is connected. But then the sequence {Li}fmmX is a

nested sequence of connected sets whose intersection is {x, y} which is not

connected, contrary to the assumption that X is a-coherent. It follows that there is

a least integer N such that A = U íl \A¡.

Next we show that if each of u and v is a positive integer and 1 < u < N, then

v4uc is finite. If not, then there is an integer u with 1 < u < N and a positive integer

v such that /iM° is finite and A°+x is infinite. Thus there is an arc ß in A° and an

infinite sequence {am¡}fLx of arcs in A°+i each having its last point in ß. By

construction, ß has at most one point in common with M so there is a point x in

M — ß. For each positive integer /c, let Lk = UI>lt (a„^ u M^) u /5 u {*} and

note that {L¡}fL\ is a nested sequence of connected sets whose intersection is

ß U {x} which is not connected, contrary to hypothesis. Since the arcs of the

sequence {a,}°l, are distinct, it follows that there is an integer u, 1 < u < N, such

that for each positive integer v, A° is nonempty.

We next show there is a sequence {y,}Jl, such that for each positive integer n,

yn+x has its last point in yn and yn is in A¡¡. Let y, be the member of A]. If n is a

positive integer and o, is an arc in Au, then by an «-chain from 5, is meant a finite

sequence of arcs, 8X82, . . . ,8„, such that (1) for each integer / with 1 < / < n, o, has

its last point in o,_,, and (2) there is an integer m > 0 such that for each integer /

with 1 < / < n, o, is in A™+'. There is an arc o in A2 such that for each positive

integer n, there is an «-chain from o. If not then for each member 5 of A2 there

is an integer ns such that there is no «s-chain from Ô. But then if N —

max{ns|o G A2} then A*+i is vacuous which is a contradiction. Thus there is an

arc y2 in A2 such that for each positive integer n, there is an «-chain from y2.

Similarly there is an arc y3 in A\ with last point in y2 and such that for each

positive integer n, there is an «-chain from y3. This process may be continued to

determine an infinite sequence {y,}°l, of arcs such that for each positive integer «,

y„ E A" and the last point of yn + x is in yn. Note that if each of / and/ is a positive

integer and \i — j\ > 1, then y, n Jj is vacuous. Let x and y denote distinct points

of M — yx, and for each positive integer /, let k¡ denote the integer such that

ak, " If For each positive integer n, let Ln = U1>n (ak¡ u M^) u {x} u {y}-

Once again we have a nested sequence {Li}f_x of connected sets whose intersec-

tion is not connected, contrary to hypothesis, and our proof is complete.

3. Examples and remarks.

Example 1. This example shows that a regular continuum may fail to be

a-coherent. Let A ■■ [0, 1] and let D be the set of dyadic rationals between 0 and 1.

For each x in D of the form (2/? + l)/2", where « > 1 and 0 < /? < 2"_1 - 1, let

Cx be the semicircle in the upper half-plane with center at x and radius 1/2". Then

X = A u (Uxeö Cx), with the relative topology from the plane, is a regular

continuum which is not a-coherent.

This example suggests that a a-coherent continuum cannot contain a continuum

of condensation. However, the example on p. 247 of [3], which is an example of a
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continuum of condensation which is not a convergence continuum, shows that this

is false. The following example shows that even a continuum with no continuum of

condensation (and hence regular) may fail to be a-coherent.

Example 2. Let A = [0, 1] and, for « > 1, let C„ be the semicircle in the upper

half-plane with center at 1/2 and radius 1/2". Let X = A u (U „>, C„). For each

« let Kn = (U*>„ Ck) u (A - {1/2}). Then for each n, K„ is connected, Kn+X c

Kn, and H"_i Kn = A — {1/2}, which is not connected. Thus, X is not a-coher-

ent.

The property of being acyclic (in the sense of containing no simple closed curve)

does not imply a-coherence. However, the fact that a-coherence is equivalent to

local connectivity in the acyclic case follows from the observation that every

dendrite is a-coherent.

Finally, it is simple to show that o-coherence is preserved under monotone maps.

It would be interesting to know if this is true for confluent maps.
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