FURTHER DIVISIBILITY PROPERTIES
 OF THE q-TANGENT NUMBERS

DOMINIQUE FOATA

> Abstract. The q-tangent number $T_{2 n+1}(q)$ is shown to be divisible by $(1+q)^{a(n, 1)}\left(1+q^{2}\right)^{a(n, 2)} \cdots\left(1+q^{n}\right)^{a(n, n)}$, where the $a(n, i)^{\text {'s }}$ are positive integers having the maximal property that $a(n, 1)+a(n, 2)+\cdots+a(n, n)=2 n$ whenever n is a power of 2 .

1. Introduction. The q-tangent numbers are polynomials that may be defined by

$$
\begin{align*}
& \sum_{n>0} T_{2 n+1}(q) x^{2 n+1} /(q ; q)_{2 n+1} \\
& \quad=\left(\sum_{n>0}(-1)^{n} x^{2 n+1} /(q ; q)_{2 n+1}\right) /\left(\sum_{n>0}(-1)^{n} x^{2 n} /(q ; q)_{2 n}\right), \tag{1.1}
\end{align*}
$$

where $(a ; q)_{n}=(1-a q) \ldots\left(1-a q^{n-1}\right)$ for $n>1$ and $(a ; q)_{0}=1$. When q equals 1 , the q-tangent numbers become the ordinary tangent numbers $T_{2 n+1}$ $(n \geqslant 0)$ occurring in the Taylor expansion of $\tan x$

$$
\begin{equation*}
\sum_{n>0} T_{2 n+1} x^{2 n+1} /(2 n+1)!=\tan x \tag{1.2}
\end{equation*}
$$

Because of the relation

$$
\begin{equation*}
(n+1) T_{2 n+1}=2^{2 n} G_{2 n+2} \tag{1.3}
\end{equation*}
$$

where $G_{2 n+2}$ is an odd integer called the Genocchi number (see e.g. [3]), Schützenberger [6] raised the problem of finding a polynomial of the form

$$
\prod_{i>1}\left(1+q^{i}\right)^{a(n, i)}
$$

that divides $T_{2 n+1}(q)$. Along these lines Andrews and Gessel [2] proved that $T_{2 n+1}(q)$ is divisible by

$$
\begin{equation*}
A G_{n}(q)=(1+q)^{[n / 2]+1}\left(1+q^{2}\right) \ldots\left(1+q^{n}\right) . \tag{1.4}
\end{equation*}
$$

The purpose of this paper is to extend the result of the latter work as follows.
Every integer n may be written as $n=m 2^{l}$ with m odd and $l \geqslant 0$, so that the polynomial

$$
\begin{equation*}
E v_{n}(q)=\prod_{0<j<l}\left(1+q^{m 2^{j}}\right) \tag{1.5}
\end{equation*}
$$

[^0]may be defined (and is always divisible by $\left(1+q^{n}\right)$). Let
\[

$$
\begin{align*}
D_{n}(q) & =\prod_{1<i<n} E v_{i}(q) \text { for } n \text { odd, } \\
& =\left(1+q^{2}\right) \prod_{1<i<n} E v_{i}(q) \text { for } n \text { even, } \tag{1.6}
\end{align*}
$$
\]

or, in an equivalent manner,

$$
\begin{equation*}
D_{1}(q)=1+q, \quad D_{2}(q)=(1+q)^{2}\left(1+q^{2}\right)^{2} \tag{1.7}
\end{equation*}
$$

and for $n \geqslant 3$

$$
\begin{equation*}
D_{n}(q)=D_{n-2}(q) E v_{n-1}(q) E v_{n}(q) \tag{1.8}
\end{equation*}
$$

For convenience, let $E v_{0}(q)=D_{0}(q)=1$.
Theorem 1. For each $n \geqslant 0$ the polynomial $D_{n}(q)$ is a divisor of $T_{2 n+1}(q)$.
As $(1+q)\left(1+q^{n-1}\right)\left(1+q^{n}\right)$ divides $E v_{n-1}(q) E v_{n}(q)$ for every $n \geqslant 2$, formula (1.8) shows by induction that $A G_{n}(q)$ (given in (1.4)) divides $D_{n}(q)$ for all n. Thus Theorem 1 extends the result obtained by Andrews and Gessel. Now to compare the divisibility properties of $A G_{n}(q)$ with $D_{n}(q)$ write the latter polynomial in the form

$$
\begin{equation*}
D_{n}(q)=\prod_{1<i<n}\left(1+q^{i}\right)^{a(n, i)} \tag{1.9}
\end{equation*}
$$

The first values of the coefficients $a(n, i)(1<i \leqslant n)$ are shown in Table 1.

n	1	2	3	4	5	6	7	8
1	1							
2	2	2						
3	2	1	1					
4	3	3	1	1				
5	3	2	1	1	1			
6	3	3	2	1	1	1		
7	3	2	2	1	1	1	1	
8	4	4	2	2	1	1	1	1

The number of factors in $A G_{n}(q)$ (resp. $\left.D_{n}(q)\right)$ is $[n / 2]+n$ (resp. $a(n, 1)$ $+\cdots+a(n, n)$).

Proposition 2. If $2^{l} \leqslant n<2^{l+1}(l \geqslant 1)$, then

$$
\begin{equation*}
(a(n, 1)+\cdots+a(n, n))-([n / 2]+n) \geqslant 2^{l-1}-1 \tag{1.10}
\end{equation*}
$$

Finally, as $D_{n}(1)$ divides the tangent number $T_{2 n+1}$, it follows from (1.9) and (1.3), since $G_{2 n+2}$ is odd, that

$$
\begin{equation*}
a(n, 1)+\cdots+a(n, n)<2 n \tag{1.11}
\end{equation*}
$$

Whenever equality holds, we may say that $D_{n}(q)$ is maximal.
Proposition 3. When n is a power of 2 , then

$$
\begin{equation*}
a(n, 1)+\cdots+a(n, n)=2 n \tag{1.12}
\end{equation*}
$$

i.e. $D_{n}(q)$ is maximal.

The pattern of the paper by Andrews and Gessel is followed closely. In particular, the crucial part is played by a divisibility property of Gaussian polynomials (Lemma 2.2) that, roughly speaking, sorts the cyclotomic polynomials $\boldsymbol{\phi}_{\boldsymbol{d}}$ according to the parity of d.
2. A divisibility property of Gaussian polynomials. The polynomials $E v_{n}(q)$ defined in (1.5) can be expressed in terms of cyclotomic polynomials ϕ_{d} as follows.

Lemma 2.1. For each $n \geqslant 1$ we have

$$
\begin{equation*}
E v_{n}(q)=\Pi\left\{\phi_{d}(q): d \mid 2 n, d \text { even }\right\} . \tag{2.1}
\end{equation*}
$$

Proof. Let $n=m 2^{l}$ with m odd and $l \geqslant 0$. For each $j=0,1, \ldots, l$ consider the set

$$
A_{j}=\left\{d: d \mid m 2^{j+1}, d \nmid m 2^{j}\right\}
$$

and let

$$
B=\left\{d: d \mid m 2^{l+1}, d \text { even }\right\} .
$$

By definition

$$
\begin{equation*}
1-q^{i}=\prod_{d \mid i} \phi_{d}(q) \quad \text { for each } i>1 \tag{2.2}
\end{equation*}
$$

As $\left(1-q^{2 i}\right)=\left(1-q^{i}\right)\left(1+q^{i}\right)$, we then derive

$$
\begin{equation*}
1+q^{i}=\Pi\left\{\phi_{d}(q): d \mid 2 i, d \nmid i\right\} \tag{2.3}
\end{equation*}
$$

In particular, if $0 \leqslant j \leqslant l$, then

$$
1+q^{m 2^{j}}=\prod\left\{\phi_{d}(q): d \mid m 2^{j+1}, d \nmid m 2^{j}\right\}=\prod_{d \in A_{j}} \phi_{d}(q) .
$$

On the other hand, as the sets A_{j} are two by two disjoint, it suffices to show that B is the union of the A_{j} 's.

But if $d \mid m 2^{j+1}, d \nmid m 2^{j}$ for some j with $0<j<l$, then $d \mid 2 n$ (equal to $m 2^{l+1}$) and d is even. Thus d belongs to B. Conversely, suppose $d \mid 2 n$ and d even. Then $d=m^{\prime} 2^{j+1}$ with m^{\prime} odd, $m^{\prime} \mid m$ and $0 \leqslant j \leqslant l$. Consequently, d is an element of A_{j}. Q.E.D.

For each $n \geqslant 1$ let

$$
\begin{equation*}
O d_{n}(q)=\prod\left\{\phi_{d}(q): d \mid 2 n, d \text { odd }\right\} \tag{2.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
1-q^{2 n}=O d_{n}(q) E v_{n}(q) \tag{2.5}
\end{equation*}
$$

On the other hand, let the Gaussian polynomial be defined by

$$
\begin{aligned}
{\left[\begin{array}{l}
N \\
M
\end{array}\right] } & =(q ; q)_{N} /\left((q ; q)_{M}(q ; q)_{N-M}\right) \quad \text { for } 0<M<N, \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

Lemma 2.2. For nonnegative integers k and n the expression

$$
\left[\begin{array}{c}
2 n \tag{2.6}\\
2 k+1
\end{array}\right] \frac{E v_{0}(q) E v_{1}(q) \ldots E v_{k}(q)}{E v_{n-k}(q) E v_{n-k+1}(q) \ldots E v_{n}(q)}
$$

is a polynomial in q.
Proof. The expression (2.6) is zero if $k>n$. Assume that $0<k<n-1$. Using (2.5) the Gaussian polynomial $[2 k+1]$ may be factorized as a product of two factors,

$$
\begin{aligned}
{\left[\begin{array}{c}
2 n \\
2 k+1
\end{array}\right]=} & \frac{O d_{n}(q)\left(1-q^{2 n-1}\right) O d_{n-1}(q) \ldots\left(1-q^{2 n-2 k+1}\right) O d_{n-k}(q)}{\left(1-q^{2 k+1}\right) O d_{k}(q)\left(1-q^{2 k-1}\right) \ldots O d_{1}(q)(1-q)} \\
& \cdot \frac{E v_{n}(q) E v_{n-1}(q) \ldots E v_{n-k}(q)}{E v_{k}(q) E v_{k-1}(q) \ldots E v_{1}(q)}
\end{aligned}
$$

When numerators and denominators are expressed in terms of cyclotomic polynomials, the first factor, because of (2.2) and (2.4) (resp. the second factor, because of (2.1)) only involves cyclotomic polynomials ϕ_{d} with d odd (resp. d even). As $[2 k+1]$ is a polynomial and the cyclotomic polynomials are irreducible, each of these two factors is also a polynomial. But the first one is precisely equal to the expression given in (2.6). Q.E.D.
3. Proof of Theorem 1. Let $T(x)$ be the generating function for the q-tangent numbers as written in (1.1). Andrews and Gessel [2, p. 282] found that

$$
\begin{equation*}
T(x)=(-i)\left((-i x ; q)_{\infty}-(i x ; q)_{\infty}\right) /\left((-i x ; q)_{\infty}+(i x ; q)_{\infty}\right) \tag{3.1}
\end{equation*}
$$

where $(a ; q)_{\infty}=\lim _{n}(a ; q)_{n}$. As $(a ; q)_{\infty}=(1-a)(a q ; q)_{\infty}$, it is straightforward to obtain

$$
\begin{equation*}
T(x)-T(q x)=x+x T(q x) T(x) \tag{3.2}
\end{equation*}
$$

that is,

$$
\begin{aligned}
\sum_{n>0} T_{2 n+1}(q) x^{2 n} /(q ; q)_{2 n}= & 1+\left(\sum_{k>0} T_{2 k+1}(q) q^{2 k+1} x^{2 k+1} /(q ; q)_{2 k+1}\right) \\
& \cdot\left(\sum_{j>0} T_{2 j+1}(q) x^{2 j+1} /(q ; q)_{2 j+1}\right) .
\end{aligned}
$$

Equating coefficients of $x^{2 n}$ in both members we find that

$$
T_{2 n+1}(q)=\sum_{0<k<n-1}\left[\begin{array}{c}
2 n \tag{3.3}\\
2 k+1
\end{array}\right] q^{2 k+1} T_{2 k+1}(q) T_{2 n-2 k-1}(q) \quad(n>1)
$$

The proof of Theorem 1 is now completed as follows. First $T_{1}(q)=T_{2 \times 0+1}(q)=$ 1. Proceed by induction on $n \geqslant 1$. For $0<k<n-1$ the expression

$$
\left[\begin{array}{c}
2 n \tag{3.4}\\
2 k+1
\end{array}\right] \frac{T_{2 k+1}(q) T_{2 n-2 k-1}(q)}{E v_{1}(q) \ldots E v_{n}(q)}
$$

is a polynomial because it may be factorized as

$$
\left[\begin{array}{c}
2 n \\
2 k+1
\end{array}\right] \frac{E v_{0}(q) \ldots E v_{k}(q)}{E v_{n-k}(q) \ldots E v_{n}(q)} \cdot \frac{T_{2 k+1}(q)}{E v_{0}(q) \ldots E v_{k}(q)} \cdot \frac{T_{2 n-2 k-1}(q)}{E v_{1}(q) \ldots E v_{n-k-1}(q)},
$$

the first factor being a polynomial by Lemma 2.2; the other two are also by the induction hypothesis. This shows, when n is odd, that each term in the sum on the right side of (3.3) is divisible by $D_{n}(q)=E v_{1}(q) E v_{2}(q) \ldots E v_{n}(q)$. Hence, $D_{n}(q)$ divides $T_{2 n+1}(q)$. When n is even, rewrite (3.3) by grouping the terms two by two to give

$$
T_{2 n+1}(q)=\sum_{0<k<n / 2-1}\left[\begin{array}{c}
2 n \tag{3.5}\\
2 k+1
\end{array}\right] q^{2 k+1}\left(1+q^{2(n-2 k-1)}\right) T_{2 k+1}(q) T_{2 n-2 k-1}(q)
$$

As n is even, $\left(1+q^{2(n-2 k-1)}\right)$ is divisible by $\left(1+q^{2}\right)$, and by (3.4) the expression $\left[\begin{array}{c}2 k+1\end{array}\right] T_{2 k+1}(q) T_{2 n-2 k-1}(q)$ is divisible by $E v_{1}(q) E v_{2}(q) \ldots E v_{n}(q)$. Hence, each term in the sum on the right side of (3.5) is divisible by $D_{n}(q)=$ $\left(1+q^{2}\right) E v_{1}(q) \ldots E v_{n}(q)$. This completes the proof of Theorem 1.
4. Proofs of Propositions 2 and 3. Note that $D_{2}(q)=\left(1+q^{2}\right) E v_{1}(q) E v_{2}(q)=$ $(1+q)^{2}\left(1+q^{2}\right)^{2}$. Thus (1.12) holds for $n=2$. Let $n=2^{l}(l>2)$ and proceed by induction on l. Clearly

$$
E v_{2 i}(q)=E v_{i}(q)\left(1+q^{2 i}\right) \quad(i \geqslant 1)
$$

Hence,

$$
\begin{aligned}
D_{n}(q) & =\left(1+q^{2}\right) \prod_{1<i<n} E v_{i}(q) \\
& =\left(1+q^{2}\right) \prod_{\substack{1<i<n \\
i \text { idd }}} E v_{i}(q) \cdot \prod_{\substack{1<i<n \\
i \text { even }}} E v_{i}(q) \\
& =\left(1+q^{2}\right) \prod_{1<i<n / 2}\left(1+q^{2 i-1}\right) \cdot \prod_{1<i<n / 2} E v_{2 i}(q) \\
& =\left(1+q^{2}\right) \prod_{1<i<n / 2}\left(1+q^{2 i-1}\right) \cdot \prod_{1<i<n / 2}\left(1+q^{2 i}\right) \cdot \prod_{1<i<n / 2} E v_{i}(q) .
\end{aligned}
$$

By grouping the first and last factors we obtain

$$
\begin{equation*}
D_{n}(q)=D_{n / 2}(q) \prod_{1<i<n}\left(1+q^{i}\right) \tag{4.1}
\end{equation*}
$$

Therefore, if the number of factors in $D_{n / 2}(q)$ is n, the polynomial $D_{n}(q)$ will have $n+n=2 n$ factors. This completes the proof of Proposition 3.

As for Proposition 2 let $d_{n}=a(n, 1)+\cdots+a(n, n)$ for $n \geqslant 1$. From (1.6) and (1.9) it follows that $d_{2 n}=d_{2 n+1}$ for $n>1$. On the other hand, the number of factors in $A G_{2 n+1}(q)$ is $3 n+1$. Let $p=2^{l}<2 n<2^{l+1}(l \geqslant 1)$. To prove Proposition 2 it suffices to show that $d_{2 n}-(3 n+1) \geqslant 2^{l-1}-1$, i.e.

$$
\begin{equation*}
d_{2 n} \geqslant 3 n+2^{l-1} \tag{4.2}
\end{equation*}
$$

From (1.8)

$$
D_{2 n}(q)=D_{p}(q) \prod_{p+1<i<2 n} E v_{i}(q) .
$$

But, when i is even, the polynomial $E v_{i}(q)$ is a product of at least two binomials $\left(1+q^{j}\right)$. Hence

$$
d_{2 n} \geqslant d_{p}+3(2 n-p) / 2=3 n+2^{l-1}
$$

which is inequality (4.2).
5. Concluding remarks. Recall that a permutation $x_{1} x_{2} \ldots x_{2 n+1}$ of the sequence $12 \ldots(2 n+1)$ is alternating if $x_{1}>x_{2}, x_{2}<x_{3}, \ldots, x_{2 n}<x_{2 n+1}$. As $[2 k+1]$ is the generating polynomial for permutations $x_{1} x_{2} \ldots x_{2 n}$ of $1^{2 k+1} 2^{2 n-2 k-1}$ by number of inversions (see e.g. [1, p. 41]), it is clear that the running term on the right side of (3.3) is the generating polynomial for alternating permutations $x_{1} x_{2} \ldots x_{2 n+1}$ of $12 \ldots(2 n+1)$ with $x_{2 k+2}=1$, by number of inversions, a result known to several authors [4]-[7]. The proof of Theorem 1 shows that the latter generating function is itself divisible by $E v_{1}(q) E v_{2}(q) \ldots E v_{n}(q)$. It would be interesting to have a combinatorial proof of this result by using that alternating permutation set-up.

From (3.1) Andrews and Gessel [2] derived the recurrence formula

$$
\begin{gather*}
T_{2 n+1}(q)+\sum_{1<j<n}(-q ; q)_{2 j-1}\left[\begin{array}{c}
2 n+1 \\
2 j
\end{array}\right](-1)^{j} T_{2 n+1-2 j}(q) \\
 \tag{5.1}\\
=(-1)^{n}(-q ; q)_{2 n} .
\end{gather*}
$$

It was not possible to use (5.1) directly to prove Theorem 1 because, for instance, when $n=2^{l}(l \geqslant 1)$ the polynomial $(-q ; q)_{2 n}$ is not divisible by $D_{n}(q)$. That is why we had to derive the quadratic recurrence formula (3.3).

References

1. G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley, Reading, Mass., 1976.
2. G. E. Andrews and I. Gessel, Divisibility properties of the q-tangent numbers, Proc. Amer. Math. Soc. 68 (1978), 380-384.
3. D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J. 41 (1974), 305-318.
4. I. Gessel, Generating functions and enumeration of sequences, Ph. D. thesis, M.I.T., 1977.
5. D. Rawlings, Generalized Worpitzky identities, Univ. of California, San Diego, 1979 (preprint); European J. Combinatorics (to appear).
6. M. P. Schützenberger, Oral communication, Combinatorics Conference, Oberwolfach, 1975.
7. R. P. Stanley, Binomial posets, Möbius inversion and permutation enumeration, J. Combinatorial Theory Ser. A 20 (1976), 336-356.

Département de Mathématique, Université de Strasbourg, 7 Rue René Descartes, F 67084 Strasbourg, France

[^0]: Received by the editors October 25, 1979.
 AMS (MOS) subject classifications (1970). Primary 05A15, 05A19; Secondary 33A30.

