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FURTHER DIVISIBILITY PROPERTIES

OF THE qr-TANGEMT NUMBERS

DOMINIQUE FOATA

Abstract. The <?-tangent number T2n+i(q) is shown to be divisible by

(1 + qy*"< »(1 + q2y*n-2> • - • (1 + q»fO>-'\ where the a(n, i)'s are positive in-

tegers having the maximal property that a(n, 1) + a(n, 2) + • • • +a(n, n) — 2/t

whenever n is a power of 2.

1. Introduction. The ^-tangent numbers are polynomials that may be defined by

2   T2n+l(q)x2" + i/(q;q)2n + i
n>0

= ( 2 (-l)V"+1/(?;?k+l)/(S (-l)mx*/(q;ihX      (»-O

where (a; q)„ = (1 — aq) . . . (1 - aq"~x) for n > 1 and (a; i?)0 = 1. When q

equals 1, the ^-tangent numbers become the ordinary tangent numbers T2n+^

(n > 0) occurring in the Taylor expansion of tan x

2   T2n+ix2n+l/(2n+ l)\=t&nx. (1.2)
n>0

Because of the relation

(» + im„+1 = 22»G2n+2, (1.3)

where G2n+2 is an odd integer called the Genocchi number (see e.g. [3]), Schützen-

berger [6] raised the problem of finding a polynomial of the form

II (1 + q')**0
I>1

that divides T2n+1(q). Along these lines Andrews and Gessel [2] proved that

T2n+l(q) is divisible by

AG„(q) = (1 + q)["/2]+1(l + q2)...(l + q"). (1.4)

The purpose of this paper is to extend the result of the latter work as follows.

Every integer n may be written as n = ml! with m odd and / > 0, so that the

polynomial

Ev„(q)=    II   (l + çm2/) (1.5)
0<j<l
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may be defined (and is always divisible by (1 + q")). Let

Dn{q) =    II    Ev,(q)   for n odd,

= (l + q2)   Il    EVi(q)   for n even,
1<I<R

(1.6)

or, in an equivalent manner,

Dx(q) = \ + q,        D2{q) = (1 + q)\\ + q2f (1.7)

and f or n > 3

Dn(q) = Dn_2{q)Evn_x{q)Evn{q). (1.8)

For convenience, let Ev0(q) = D0(q) = 1.

Theorem 1. For each n > 0 the polynomial Dn(q) is a divisor of T2n+X(q).

As (1 + 0XI + ?"_1)(1 + ?") divides £ü„_,(í)£:ü„(?) for every n > 2, formula

(1.8) shows by induction that AG„(q) (given in (1.4)) divides Dn(q) for all n. Thus

Theorem 1 extends the result obtained by Andrews and Gessel. Now to compare

the divisibility properties of A Gn(q) with Dn(q) write the latter polynomial in the

form

Dn{q)= n (1 + «r™.
l<i<n

The first values of the coefficients a(n, /') (1 < 1 < n) are shown in Table 1.

(1.9)
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Table 1

The  number  of  factors  in AGn(q)  (resp.   Dn(q))  is  [n/2] + n  (resp.  a{n, 1)

+ • • • +a(/J,n)).

Proposition 2.1f2'<n< 2/+1 (/ > 1), then

(a(n, 1) + • • • +a(n, *)) - ([n/2] + n) > 2/_1 - 1. (1.10)

Finally, as Dn(l) divides the tangent number T2n+l, it follows from (1.9) and

(1.3), since G2n+2 is odd, that

a(n, !)+••• +a(n, n) < In. (1.11)
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Whenever equality holds, we may say that Dn(q) is maximal.

Proposition 3. When n is a power of 2, then

a(n, 1) + • • • +a(n, n) = 2n, (1.12)

i.e. D„(q) is maximal.

The pattern of the paper by Andrews and Gessel is followed closely. In

particular, the crucial part is played by a divisibility property of Gaussian poly-

nomials (Lemma 2.2) that, roughly speaking, sorts the cyclotomic polynomials <f>d

according to the parity of d.

2. A divisibility property of Gaussian polynomials. The polynomials Evn{q) de-

fined in (1.5) can be expressed in terms of cyclotomic polynomials <$>d as follows.

Lemma 2.1. For each n > 1 we have

Ev„(q) = II {+¿q): d\2n, deven). (2.1)

Proof. Let n = m2l with m odd and / > 0. For each 7 = 0, 1, . . . , / consider the

set

and let

By definition

Aj= {d:d\m2j+\d\m2J)

B = {d:d\m2'+l, deven).

1 - q'! - II <t>d(l)    for each i > 1. (2.2)
¿l'-

As (1 - q2') = (1 - ?')(1 + q'), we then derive

l + qi = Jl{<l>d(q):d\2i,d\i). (2.3)

In particular, if 0 < j < /, then

1 + qm* = II UM- d\mV+\ d \ m2j) =   ü   <t>d(l)-
d&Aj

On the other hand, as the sets Aj are two by two disjoint, it suffices to show that B

is the union of the A's.

But if d\m2J+ \d\ mlJ for somey with 0 < j < I, then d\2n (equal to mll+ ') and

d is even. Thus d belongs to B. Conversely, suppose d\2n and d even. Then

d = m'2/+1 with m! odd, m'\m and 0 < j < I. Consequently, d is an element of A,.

Q.E.D.
For each n > 1 let

Odn(q) = II M&- d\2n, d odd}, (2.4)

so that

1 - q2" = Od„(q)Evn(q)- (2-5)
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On the other hand, let the Gaussian polynomial be defined by

= («; i)n/ ((?; ?)m(?; <Ùn-m)    for 0 < M < N,
N
M

= 0   otherwise.

Lemma 2.2. For nonnegative integers k and n the expression

2n Ev0(q)Ev\(q) ■ ■ ■ Evk(q)
(2.6)

L 2k + 1J Evn_k(q)Evn_k+l(q) . .. Evn(q)

is a polynomial in q.

Proof. The expression (2.6) is zero if k > n. Assume that 0 < k < n — 1. Using

(2.5) the Gaussian polynomial [2k"+ J may be factorized as a product of two factors,

Odn(q)(l - q^-x)Odn.M ... (1 - i2-2**1)^.*^)2«
2k + 1 (1 - 92fc+I)04k(î)(l - I*-') ■ ■ ■ Od¿q)(l - q)

Evn(q)Evn_t(q) . . . Evn_k(q)

Evk(q)Evk_y(q) . . . Ev^q)

When numerators and denominators are expressed in terms of cyclotomic poly-

nomials, the first factor, because of (2.2) and (2.4) (resp. the second factor, because

of (2.1)) only involves cyclotomic polynomials <j>d with d odd (resp. d even). As

bfc+il is a polynomial and the cyclotomic polynomials are irreducible, each of these

two factors is also a polynomial. But the first one is precisely equal to the

expression given in (2.6).    Q.E.D.

3. Proof of Theorem 1. Let T(x) be the generating function for the ^-tangent

numbers as written in (1.1). Andrews and Gessel [2, p. 282] found that

T(x) = ( - /)(( - ix; q)m - (be; q)x)/ (( - ix; q)„ + (ix; q)m) (3.1)

where (a; q)x = lim„(a; q)n. As (a; q)x = (1 - a)(aq; q)œ, it is straightforward to

obtain

T(x) - T(qx) = x + xT(qx)T(x); (3.2)

that is,

2    T2n+l(q)x2»/(q; q)2n - 1 + ( 2   T^^q^x2**'/ (q; q)2k + l)
n>0 \*>0 I

•(S   T2j.+ l(q)x2^/(q;q)2J+l).
V/>o /

Equating coefficients of x2" in both members we find that

T2n+M) =       2
0<*<n-l

2/1

2k + 1 q^+^MT^-vc-Aq)  (« > 0-  (3-3)

The proof of Theorem 1 is now completed as follows. First Tx(q) = T2x0+l(q) =

1. Proceed by induction on « > 1. For 0 < k < n — 1 the expression

T2k+l(^)T2n-2k~l(l)2«
Ik + 1 Ev^q) . . . Ev„(q)

(3.4)
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is a polynomial because it may be factorized as

Ev0(q) . . . Evk(q) T^+iC?) 7^-2*-1(?)2«
2k + 1 Evn_k(q) . . . Evn(q)    Ev0(q) . . . Evk(q)    Evx{q) . . . Evn_k_x(q) '

the first factor being a polynomial by Lemma 2.2; the other two are also by the

induction hypothesis. This shows, when n is odd, that each term in the sum on the

right side of (3.3) is divisible by D„(q) = Evx(q)Ev2(q). . . Evn(q). Hence, Dn(q)

divides T2n+l(q). When n is even, rewrite (3.3) by grouping the terms two by two to

give

Tu+t{q) =        2       [ 2.2" . V*+1(l + q2(n-2k-X))T2kU<l)T2n-2k-M)-
0<*<n/2-l L iK "•"   1 J

(3.5)

As n is even, (1 + ^i"-2*-')) ¡s divisible by (1 + q2), and by (3.4) the expression

Í2k"i]T2k+i(^)T2n-2k-i^) is divisible by Evx(q)Ev2(q). . . Ev„{q). Hence, each

term in the sum on the right side of (3.5) is divisible by Dn(q) =

(1 + q2)Evx(q). . . Evn(q). This completes the proof of Theorem 1.

4. Proofs of Propositions 2 and 3. Note that D2(q) = (1 + q2)Evx(q)Ev2(q) =

(1 + q)2{\ + q2)2. Thus (1.12) holds for n = 2. Let n = 2' (/ > 2) and proceed by

induction on /. Clearly

Ev2i(q) = EVi(q)(l + q2i)        (i > 1).

Hence,

DJLq) - (1 + I2)   II     Ev,(q)
Kl'<71

= (l + q2)   II     Evt(q)-    II     EVj(q)
l<i<n l<i<n
i odd /even

= (l + q2)     n      (\ + q2i~1)-      H       Ev2i(q)
Ki'<n/2 KKn/2

= (i + q2) n (1 + ?2-1)- n (\ + q2i)- n  ^(«).
K/<n/2 K/<n/2 Ki<n/2

By grouping the first and last factors we obtain

A,(?) = Dn/2(q)   II   (1 + iO- (4.1)
Ki'<n

Therefore, if the number of factors in Dn/2{q) is n, the polynomial Dn(q) will have

n + n = 2n factors. This completes the proof of Proposition 3.

As for Proposition 2 let dn = a(n, 1) + • • • +a(n, n) for n > 1. From (1.6) and

(1.9) it follows that d2n = d2n+1 for n > 1. On the other hand, the number of

factors in AG2n+l(q) is 3« + 1. Let/> = 2' < 2n < 2/+1 (/ > 1). To prove Proposi-

tion 2 it suffices to show that d2„ — (3n + 1) > 2'-1 — 1, i.e.

d2H>3n+2'-ï. (4.2)
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From (1.8)

D2n{q) = Dp(q)      II       Ev¿q).
p + l </'<2n

But, when / is even, the polynomial Ev¡(q) is a product of at least two binomials

(1 + qJ). Hence

d2n >dp+3(2n-p)/2 = 3n + 2'-\

which is inequality (4.2).

5. Concluding remarks. Recall that a permutation xxx2 . . . x2n+1 oí the sequence

12... (2m + 1) is alternating if x, > x2, x2 <x3.x2n < x2n+,. As [2k1,] is the

generating polynomial for permutations xxx2 . . . x2n of i2k+i22n~2k^x by number

of inversions (see e.g. [1, p. 41]), it is clear that the running term on the right side of

(3.3) is the generating polynomial for alternating permutations xxx2 . . . x2n+x of

1 2 ... (2 n + 1) with x2k+2 = 1, by number of inversions, a result known to several

authors [4]-[7]. The proof of Theorem 1 shows that the latter generating function is

itself divisible by Evx(q)Ev2(q). . . Evn(q). It would be interesting to have a

combinatorial proof of this result by using that alternating permutation set-up.

From (3.1) Andrews and Gessel [2] derived the recurrence formula

7,2»+i(?) +  2 (-<?; q)v-\
Kj<n

= {-\)\-q;q)2n. (5.1)

It was not possible to use (5.1) directly to prove Theorem 1 because, for instance,

when n = 2' (/ > 1) the polynomial ( — q; q)2n is not divisible by Dn(q). That is why

we had to derive the quadratic recurrence formula (3.3).
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