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RINGS WITH EVERY PROPER IMAGE

A PRINCIPAL IDEAL RING

P. F. SMITH

Abstract. The main result of this paper states that if R is a right Noetherian right

bounded prime ring such that nonzero prime ideals are maximal and such that

every proper homomorphic image of R is a principal right ideal ring then R is right

hereditary.

In [10, Theorem 8] it is proved that if R is a right bounded prime ring of finite

right Goldie dimension such that every proper homomorphic image is a right

Artinian principal right ideal ring then R is right hereditary. It is not difficult to see

that such rings are in fact right Noetherian and so [10, Theorem 8] is a consequence

of the main result of this present paper. In fact, it is shown here that if R is a right

Noetherian right bounded prime ring, such that nonzero prime ideals are maximal

and such that for all nonzero prime ideals P, Q (not necessarily distinct) the ring

R/PQ is a principal right ideal ring, then R is right hereditary (compare [10,

Theorem 9]).

In a recent paper, Hajarnavis and Norton [5, Theorem 6.4] proved that if R is a

(right and left) Noetherian right bounded prime ring whose proper homomorphic

images are ipri-rings then R is a Dedekind prime ring. The proof involves

localization at every nonzero prime ideal of the ring R. We show how to deduce

this result and in so doing completely remove localization techniques from the

proof, making it much more elementary.

If / is any ideal of a ring R then 6(7) will denote the set of elements c in R such

that c + I is a regular element of the ring R/I. The ring R is an ipri-ring if every

(two-sided) ideal is principal as a right ideal.

Lemma 1. Let R be a right Noetherian prime ring such that every proper homomor-

phic image is an ipri-ring. If Mx and M2 are distinct maximal ideals of R then

MXM2 = M2MX = Mxn M2.

Proof. Since R is prime, but not simple, it follows that MXM2 n M2MX ̂  0. Let

R = R/(MXM2 n M2MX). Then R is a right Noetherian ipri-ring and Mx and M2

are distinct maximal ideals of R, where " denotes images in R. There exist

elements cx, c2 in R such that Mx = cxR and M2 = c2R. By [2, Theorem 3.9],

c, G G(M2) and c2 e C(A/,). It follows that Af, n M2 C cxM2 = MXM2 and hence

Mx n M2 Ç MXM2. Thus Mx n M2 = MXM2 and similarly Mx n M2 = M2MX.
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An ideal I of a ring R has the right AR property if for each right ideal E there

exists a positive integer n such that E n /" Q El.

Lemma 2 (see [7, Theorem 1.2]). Let R be a right Noetherian prime ring and I a

proper ideal such that I has the right AR property. Then f~l"_i /" = 0.

If E is a right ideal of a ring R then the bound of E is the unique largest

(two-sided) ideal contained in E. The ring R is right bounded if every essential right

ideal has nonzero bound.

Lemma 3. Let R be a right Noetherian right bounded prime ring such that every

proper homomorphic image is an ipri-ring. Then the following statements are equiva-

lent.

(i) Nonzero prime ideals of R are maximal ideals.

(ii) Every ideal of R has the right AR property.

Proof, (i) =s> (ii) By Lemma 1 and [4, Proposition 3.2].

(ii) => (i) Let P C Q be distinct prime ideals of R. Suppose P =£ 0. Then the ring

R/P2 is an ipri-ring. Let R = R/P2 and let ~ denote images in R. There exists an

element q in Q such that Q = q~R. By [2, Theorem 3.9] q G G(P) and it follows

that P = qP. Thus P = qP + P2 Q QP. Hence P = QP = Q2P = ■ ■ • and Q =

R, for otherwise PC fl "_, Ô" = 0 by Lemma 2.

Lemma 4. Let R be a right Noetherian prime ring and I a proper ideal of R such

that I has the right AR property. If E is an essential right ideal of R and c an element

of E such that E = cR + El then c is regular.

Proof. Since E = cR + El = cR + El2 = • • •  it follows that

GO

e < n (cr + n.
n=l

By [2, Theorem 3.9] E contains a regular element e. Let F = eR + cR. There exists

a positive integer m such that F n Im < FI. There exists r in Ä such that

e G er + Im, so that e — cr & FI. Thus e — cr = ea + cb for some elements a, b

in I. Thus e(l — a) = cs where s = r + b. By Lemma 2, 1 — a is regular in R and

hence cs is regular in R. If r(s) denotes the right annihilator of the element j then

r(s) = 0 and by [2, Lemma 3.8] sR is an essential right ideal of R. Let u G R satisfy

cu = 0. If u ¥= 0 then there exists t>, w in R such that 0 =£ uv = sw. Then cu = 0

implies w = 0, a contradiction. Thus r(c) = 0 and it follows that c is regular in R.

The next lemma is concerned with the question of when a right ideal which

contains a projective right ideal is itself projective.

Lemma 5. Let E be a right ideal of a ring R such that E contains a projective right

ideal P. If there exists a right ideal F such that E C\ F Q P and E + F = R then E

is projective.

Proof. Clearly R/P = (E/P) © (F + P)/P. Since P is projective it follows

that R/P has projective dimension < 1. Thus (F + P)/P has projective dimen-

sion < 1 and, because R/E — (F + P)/P, so has R/E. Thus E is projective.



PRINCIPAL IDEAL RING 349

Theorem 6. Let R be a right Noetherian right bounded prime ring such that

nonzero prime ideals are maximal and every proper homomorphic image is a principal

right ideal ring. Then R is right hereditary.

Proof. By Lemma 3 every ideal of R has the right AR property. Let E be an

essential right ideal of R and let I be the bound of E. Then El is an essential right

ideal of R. Let A be the bound of EL Since R/A is a principal right ideal ring

there exists an element c in E such that E = cR + EL By Lemma 4, c is regular.

Thus cR is an essential right ideal of R (see [2, Lemma 3.8]). Let B be the bound of

cR. Then A + B Q E. Since R is right Noetherian the nonzero ideal B contains a

product of nonzero prime, and hence maximal, ideals, say MXM2 ■ ■ • Mn <Z B with

each M¡ a maximal ideal of R. Since A + B <Z E it follows that A <Z M¡ for some

1 < i < n and by Lemma 1 we can suppose without loss of generality that / = 1.

By rearranging the ideals M¡ (1 < i < n) using Lemma 1, if necessary, we may

suppose that there exists a positive integer m < n such that I C M¡ (1 < i < m)

and / $ M, (m + 1 :< i < n).

Since E = cR + EI = cR + EI2 = • • • it follows that E C cR + Im. If m =

n then I" C B Q cR and hence E <Z cR. Thus E = cR and E is projective.

Otherwise, if m < n let J = Mm+X n • • • n A/„. Then ImJ Q cR and hence EJ <Z

cR. There exists a positive integer k such that E p\ Jk Q EJ Q cR. Moreover,

I + J = R implies that I + Jk = R and hence E + Jk = R. By Lemma 5, E is

projective. It follows that every essential right ideal of R is projective. But every

right ideal of R is a direct summand of an essential right ideal. Hence R is right

hereditary.

In what follows, by a Noetherian ring we shall mean a right and left Noetherian

ring. If / is an ideal of a ring R then we call a right ideal E essential modulo I if

I <Z E and E/I is an essential right ideal of the ring R/I. The next result is well

known.

Lemma 7. Let M be a maximal ideal of a Noetherian ring R. Then Q(M) =

G(Mk) for all positive integers k.

Proof. Suppose G(M) = G(Mk) for some k > 1. We shall prove that G(M) =

G(Mk+l). The result will then follow by induction. By a result of Djabali (see [3,

Theorem 2.1]), G(Mk + l) Q G(M). Let

K = {/• G R : re G Mk+i for some c in G(M)}.

Then K < Mk. By [2, Theorem 3.9] a right ideal E is essential modulo M if and

only if cR + M Q E for some element c in G(M). Thus

K = (rG R : rE <Z Mk + i for some right ideal E essential modulo M }.

By the properties of essential right ideals of R/M it follows that K is an ideal of R.

Since R is left Noetherian the left ideal K is finitely generated and hence

Kd Ç Mk+l for some din G(M). But KM Ç Mk+i and thus

M g (feuere A/*+1} = L.
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Because M is maximal, L = R and hence K Q Mk+X. Thus whenever r G R,

c G G(M) and re G Mk+i we have r G Mk+]. By a similar argument it can be

shown that if cr G Mk+l with r in Ä and c in 6(M) then r G A/*+1. Thus

<2(M) £ ß(M* + 1) and we conclude G(M) = e(A/*+1).

Lemma 8 (see [6, Lemma 3.1]). Let I = aR be an ideal of a Noetherian ring R such

that I Q n™_! b"R for some element b in R. Then there exists c in R such that

(1 - cb)I = 0.

Lemma 9. Let R be a Noetherian right bounded prime ring such that every proper

homomorphic image is an ipri-ring. If P is a nonzero prime ideal of R then the ring

R/P is right Artinian.

Proof. Let Q Q M be distinct prime ideals of R and suppose Q ¥= 0. Then the

ring R/Q2 is an ipri-ring. Let R = R/Q2 and ~ denote images in R. As in the

proof of Lemma 3 (ii)=>(i), Q = MQ and hence Q C D"_, M". By Lemma 8,

there exists an element m in M such that (Ï — m)Q = Ö. By [6, Corollary 3.4],

1 — m is nilpotent and hence M = R. Thus nonzero prime ideals of R are

maximal. Also by Lemma 1 maximal ideals of R commute.

Let P be a nonzero prime ideal of R. Let c G G(P). By Lemma 3 P has the right

AR property and by Lemma 2 n "_ ] P" = 0. Hence by Lemma 7, c G 6(0). Thus

cR is an essential right ideal of R (see [2, Theorem 3.9]) and there exist maximal

ideals Ai,,..., Mk for some positive integer k such that MXM2 ■ ■ ■ Mk Ç cR.

Suppose that P =£ M¡ (1 < / < k). Then there exists an element p in P such that

1 - p G MXM2 ■ ■ ■ MkQcR. It follows that c + P is a unit in the ring R/P.

Therefore, suppose P = M¡ for some I < i < k. Then there exists a positive integer

/ and an element x in P such that P'(\ — x) Q cR. In this case, c G Q(P) implies

pi _ cpt _^ pt+\

by Lemma 7. Let R* = R/P'+l and let * denote images in R*. Since R* is an

ipri-ring it follows that (/")* is principal as a right ideal and

00

(p')* c n c*nR*.
n-l

By Lemma 8 there exists an element a in R such that

(1* - a*c*)(P')* =0.

Thus (1 - ac)P' Q P'+l. Let K = {/• G R : rP' C P'+l}. Then K is an ideal of R

anà P (Z K. \i K = R then 7" = P'+l and so /" = 0 by Lemma 2. Thus K= P

and hence 1 - ac G P. It follows that c + P is a. unit in R/P. Thus, for each

element c in ß(^) we have proved that c + P is a unit in Ä/.P. By [2, Theorems

4.1 and 4.4] the ring R/P is right Artinian.

Given Lemma 9, the next result is well known but we include it and its proof for

completeness.

Theorem 10. Let R be a Noetherian right bounded prime ring such that every

proper homomorphic image is an ipri-ring. Then R is a Dedekindprime ring.
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Proof. Let I be a nonzero ideal of R. There exist a positive integer k and prime

ideals Px, . . . , Pk such that Px • • • Pk C I. By Lemma 9 the ring R/I is right

Artinian. In addition R/I is an ipri-ring and hence R/I is a principal right ideal

ring by [6, Theorem 2.8]. Thus every proper homomorphic image of R is a principal

right ideal ring and every nonzero prime ideal is maximal. By Theorem 6, R is right

hereditary. Since R is left Noetherian it follows that R is left hereditary and by

combining Lemmas 2 and 3 with [1, Theorem 1.2] we see that R is a Dedekind

prime ring.

Lemma 11. Let R be a Noetherian prime ring such that the ring R/PQ is an

ipri-ring for all nonzero prime ideals P, Q. Then the ring R/I is an ipri-ring for all

nonzero ideals I of R.

Proof. Note first that nonzero prime ideals of R are maximal ideals. Let PCM

be distinct prime ideals of R with P ¥= 0. Then R/P2 is an ipri-ring. Let R =

R/P2 and ~ denote images in R. Then P = MP by the proof of Lemma 3

(ii)=>(i). Thus P C n"_i M" and by Lemma 8 there exists an element m in M

such that (1 — m)P = 0. By [6, Corollary 3.4], 1 — m is nilpotent and hence

M = R.

Now let P and Q be distinct maximal ideals of R. By hypothesis the ring

R* = R/PQ is an ipri-ring. If * denotes images in R* then P* = p*R* for some

element p in R. Since P $ Q, it follows that p G G(Q) (see [2, Theorems 3.9]).

Hence P* n Q* C p*Q* = 0. Thus P n Q C PQ and this gives P n Q = PQ.

Similarly by considering the ring R/'QP we have P n Q = QP. Thus nonzero

prime ideals of R commute.

Let I be a nonzero ideal of R. Then there exist positive integers k, nx, . . ., nk

and distinct maximal ideals Mx, . . . , Mk such that

MJWjF • • • M? CI.

By the Chinese Remainder Theorem

k

R/ (Mi" • • • M?) m ® (R/M?).
i=i

Moreover, by [5, Theorem 4.1] the ring R/M? is an ipri-ring for each 1 < i < k. It

follows that the ring R/(M"1 • • ■ M^), and hence the ring R/I, is an ipri-ring.

Combining Lemma 11 with Theorems 6 and 10 we have as our final result

Corollary 12. Let R be a right Noetherian right bounded prime ring such that

either (a) nonzero prime ideals of R are maximal and R/PQ is a principal right ideal

ring for all nonzero prime ideals P and Q of R, or (b) R is left Noetherian and R/PQ

is an ipri-ring for all nonzero prime ideals P and Q of R. Then R is right hereditary.

[9] gives an example of a Noetherian simple ring S which has infinite global

dimension but Krull dimension one. It is shown in [8] that if E is an essential right

ideal of S and c any regular element in E then the right 5-module E/cS is cyclic.

This example highlights the fact that Theorem 6 is a result about right bounded

rings.
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