SPECTRA OF OPERATORS WITH FIXED IMAGINARY PARTS

ANDRZEJ POKRZYWA

ABSTRACT. The aim of this paper is to obtain the best bound for the distance between the eigenvalues of a Hermitian matrix B and the real parts of eigenvalues of a matrix B + iA, where A is also Hermitian, in the terms of eigenvalues of A. A similar problem in infinite-dimensional Hilbert space is also considered.

This paper was inspired by the papers of Kahan [4], [5] and Gohberg [1]. The obtained results may be regarded as the generalizations of some results of these authors. A solution of the problem of Kahan, which consists of computing the best constant in the inequality $||Z - Z^*|| \le K_n ||Z + Z^*||$ for all $n \times n$ matrices with real spectrum, is obtained (Corollary 2).

Notations. Let H denote a complex Hilbert space with the norm $\|\cdot\|$ and the scalar product $\langle \cdot, \cdot \rangle$. L(H) denotes the algebra of all bounded linear operators acting in H. For an $A \in L(H)$, $\sigma(A)$ denotes the spectrum of A. For a compact $A \in L(H)$, s_1, s_2, \ldots denote the eigenvalues of $\sqrt{AA^*}$, repeated according to multiplicity and arranged in decreasing order.

Finite-dimensional case. In this section we assume that H is n-dimensional and that $A = A^*$ is an operator in H with eigenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_n$.

LEMMA 1. There exists $B = B^* \in L(H)$ such that $\sigma(A + iB) \subset \mathbb{R}$ and

$$||B|| = \frac{1}{n} \sum_{j=1}^{n} \lambda_j \operatorname{ctg} \frac{2j-1}{2n} \pi.$$

PROOF. Let $\{e_j\}_1^n$ be an orthonormal basis of H. Define operator S by the formula

$$S = -\langle \cdot, e_1 \rangle e_n + \sum_{j=1}^{n} \langle \cdot, e_j \rangle e_{j-1}.$$

The vectors $v_k = \sum_{j=1}^n \exp(((2k-1)/n)j\pi i)e_j$ are mutually orthogonal eigenvectors of S of norm n. When the basis $\{e_i\}$ is suitably chosen then

$$A = \frac{1}{n} \sum_{j=1}^{n} \lambda_{j} \langle \cdot, v_{j} \rangle v_{j}.$$

Received by the editors May 25, 1979.

We shall show that the operator

$$B = i \sum_{k,j=1}^{n} sign(k-j) \langle Ae_j, e_k \rangle \langle \cdot, e_j \rangle e_k$$

satisfies the thesis of our lemma.

Since $A = \sum_{k=1}^{n} \langle Ae_i, e_k \rangle \langle \cdot, e_i \rangle e_k$ we see that the matrix of the operator

$$A + iB = \sum_{k=1}^{n} \langle Ae_k, e_k \rangle \langle \cdot, e_k \rangle e_k + 2 \sum_{k < j} \langle Ae_j, e_k \rangle \langle \cdot, e_j \rangle e_k$$

is triangular in the basis $\{e_j\}$. Therefore the eigenvalues of A+iB are $\lambda_k(A+iB)=\langle Ae_k,e_k\rangle=(1/n)\sum_{i=1}^n\lambda_i$. Hence $\sigma(A+iB)\subset \mathbb{R}$.

Note that

$$\langle Ae_j, e_k \rangle = \left(\frac{1}{n} \sum_{s=1}^n \lambda_s \langle e_j, v_s \rangle v_s, e_k \right) = \frac{1}{n} \sum_{s=1}^n \lambda_s \exp\left(\frac{2s-1}{n} (k-j)\pi i\right).$$

Now it is easy to verify that if we define the numbers b_j and the operator T by the relations

$$b_{j} = -i \sum_{s=1}^{n} \lambda_{s} \exp\left(-\frac{2s-1}{n} j\pi i\right), \qquad T = \langle \cdot, e_{1} \rangle e_{n} + \sum_{k=1}^{n-1} \langle \cdot, e_{k+1} \rangle e_{k},$$

then $B = (1/n)\sum_{j=1}^{n-1}b_jT^j$. Since the numbers $\lambda_k(T) = \exp(2k\pi i/n)$ are the eigenvalues of T, the eigenvalues of B are

$$\lambda_k(B) = \frac{1}{n} \sum_{j=1}^{n-1} b_j (\lambda_k(T))^j = \frac{1}{n} \sum_{s=1}^n \lambda_s \operatorname{ctg} \frac{2(s-k)-1}{2n} \pi.$$

Hence

$$||B|| = \max_{k} |\lambda_k(B)| = \frac{1}{n} \sum_{s=1}^{n} \lambda_s \operatorname{ctg} \frac{2s-1}{2n} \pi.$$

LEMMA 2. If $B = B^* \in L(H)$ and $\sigma(A + iB) \subset \mathbb{R}$ then

$$||B|| \leq \frac{1}{n} \sum_{s=1}^{n} \lambda_s \operatorname{ctg} \frac{2s-1}{2n} \pi.$$

PROOF. By the theorem on triangular matrix form there exists an orthonormal basis $\{e_j\}_1^n$ of H such that $\langle (A+iB)e_k, e_j \rangle = 0 = \langle (A-iB)e_j, e_k \rangle$ for k < j. This implies that $i\langle Be_j, e_k \rangle = \langle Ae_j, e_k \rangle$ and $i\langle Be_k, e_j \rangle = -\langle Ae_k, e_j \rangle$ for k < j. Since $\langle A+iBe_k, e_k \rangle \subset \sigma(A+iB) \subset \mathbb{R}$ and A, B are selfadjoint, $\langle Be_k, e_k \rangle = 0$. Hence $B = \sum_{j,k} \langle Be_j, e_k \rangle \langle \cdot, e_j \rangle e_k = -\sum_{j,k} \operatorname{sign}(j-k) \langle Ae_j, e_k \rangle \langle \cdot, e_j \rangle e_k$. Setting $\langle \cdot, e_j \rangle e_j = E_j$ we may write

$$B = i \sum_{i,k} \operatorname{sign}(k - j) E_k A E_j.$$
 (1)

Since $B = B^*$ there is a unit eigenvector f of B such that $||B|| = |\langle Bf, f \rangle|$. If we set $\langle \cdot, f \rangle f = F$ then tr $BF = \langle Bf, f \rangle$. Using properties of trace and (1) we see

that

$$(\pm ||B|| =) \operatorname{tr} BF = \operatorname{tr} \left(i \sum_{j,k} \operatorname{sign}(k-j) E_k A E_j F \right)$$
$$= \operatorname{tr} \left(A \sum_{j,k} i \operatorname{sign}(k-j) E_j F E_k \right) = \operatorname{tr} AG, \tag{2}$$

where we have set $i \sum_{j,k} \operatorname{sign}(k-j) E_j F E_k = G$. G is a selfadjoint operator. Let $\omega_1 > \omega_2 > \cdots > \omega_n$ be its eigenvalues. It is shown in [1] that

$$\omega_j = -\omega_{n+1-j}, \qquad j = 1, 2, \ldots, n, \tag{3}$$

and that if $||E_j f|| \neq 0$ for all j then for $j \leq \lfloor n/2 \rfloor \sum_{k=1}^n \arg(\omega_j + i ||E_k f||^2) = (2j-1)\pi/2$. This means that

$$\frac{(2j-1)\pi}{(2n)} = \frac{1}{n} \sum_{k=1}^{n} \operatorname{arc} \operatorname{tg}(\|E_k f\|^2 / \omega_j)$$

$$\leq \operatorname{arc} \operatorname{tg}\left(\frac{1}{n} \sum_{k=1}^{n} \|E_k f\|^2 / \omega_j\right) = \operatorname{arc} \operatorname{tg}\left(\frac{1}{n\omega_j}, \frac{1}{n\omega_j}\right)$$

since the function arc tg is concave in the interval $[0, \infty]$. Since tangent is an increasing function in $[0, \pi/2)$ we obtain the inequality $tg((2j-1)\pi/(2n)) \le 1/(n\omega_i)$, equivalent to

$$\omega_j < \frac{1}{n} \operatorname{ctg} \frac{2j-1}{2n} \pi, \quad j = 1, 2, \dots, n/2.$$
 (4)

By continuity of eigenvalues (4) holds also when $E_i f = 0$ for some j.

It follows from (3) that tr G = 0. Let $\mu > -\lambda_n$; then

$$s_i(A + \mu) = \lambda_i + \mu. \tag{5}$$

Let x_j be the normalized eigenvector of G, $Gx_j = \omega_j x_j$. Since G is selfadjoint $\{x_j\}_{1}^n$ is an orthonormal basis for H. Thus, using Abel transformation, we may write

$$\operatorname{tr} AG = \operatorname{tr}(A + \mu)G = \sum_{j} \langle (A + \mu)Gx_{j}, x_{j} \rangle = \sum_{j} \omega_{j} \langle (A + \mu)x_{j}, x_{j} \rangle$$

$$= \sum_{j=1}^{n-1} (\omega_{j} - \omega_{j+1}) \sum_{k=1}^{j} \langle (A + \mu)x_{k}, x_{k} \rangle + \omega_{n} \sum_{k=1}^{n} \langle (A + \mu)x_{k}, x_{k} \rangle. \quad (6)$$

The Ky-Fan lemma [2, Lemma II.4.1] and (5) imply that

$$\left| \sum_{k=1}^{j} \langle (A + \mu) x_k, x_k \rangle \right| < \sum_{k=1}^{j} s_k (A + \mu) = \sum_{k=1}^{j} (\lambda_k + \mu).$$

Note also that if j = n then in the above inequality we have in fact the equality without the modulus. Hence

$$\operatorname{tr} AG \leqslant \sum_{j=1}^{n-1} (\omega_j - \omega_{j+1}) \sum_{k=1}^{j} (\lambda_k + \mu) + \omega_n \sum_{k=1}^{n} (\lambda_k + \mu)$$
$$= \sum_{j=1}^{n} \omega_j (\lambda_j + \mu) = \sum_{j=1}^{n} \lambda_j \omega_j.$$

Writing the just obtained inequality with -A instead of A we obtain by (3) the inequality $-\text{tr }AG \leq \sum_{j}\omega_{j}(-\lambda_{n+1-j}) = \sum_{j}\lambda_{j}\omega_{j}$. This with (2), (3) and (4) shows that

$$||B|| = |\operatorname{tr} AG| \le \sum_{j} \lambda_{j} \omega_{j} = \sum_{j=1}^{\lfloor n/2 \rfloor} (\lambda_{j} - \lambda_{n+1-j}) \omega_{j}$$

$$\le \frac{1}{n} \sum_{j=1}^{\lfloor n/2 \rfloor} (\lambda_{j} - \lambda_{n+1-j}) \operatorname{ctg} \frac{2j-1}{2n} \pi = \frac{1}{n} \sum_{j=1}^{n} \lambda_{j} \operatorname{ctg} \frac{2j-1}{2n} \pi.$$

The lemma is proved.

THEOREM 1. Suppose that B is a selfadjoint operator in H. Let $\{\beta_j\}_1^n$, $\{\mu_j\}_1^n$ be the eigenvalues of B, B+iA, respectively, arranged in such a way that $\beta_j > \beta_{j+1}$, Re $\mu_i > \text{Re } \mu_{i+1}$ for $j=1,2,\ldots,n-1$. Then

$$|\beta_j - \operatorname{Re} \mu_j| \le \frac{1}{n} \sum_{s=1}^n \lambda_s \operatorname{ctg} \frac{2s-1}{2n} \pi.$$

PROOF. Following Kahan [5] and identifying the operators with matrices we may assume that B + iA is an upper triangular matrix and that B + iA = D + iZ, where D is a real diagonal matrix, Z is an upper triangular matrix with real spectrum. Hence the numbers $\operatorname{Re} \mu_j$ are eigenvalues of D. Since $B - D = i(Z - Z^*)/2$ it follows from Weyl's inequality that $|\beta_j - \operatorname{Re} \mu_j| \le ||B - D|| = ||\operatorname{Im} Z||$. Since $\operatorname{Re} Z = (Z + Z^*)/2 = A$ the thesis follows from Lemma 2.

For a subset F of the complex plane let $Re F = \{Re \lambda; \lambda \in F\}$. The following corollaries follow easily from the obtained results.

COROLLARY 1.

$$\max_{B=B^{\bullet}\in L(H)}\operatorname{dist}(\sigma(B),\operatorname{Re}\,\sigma(B+iA))=\frac{1}{n}\sum_{1}^{n}\lambda_{s}\operatorname{ctg}\,\frac{2s-1}{2n}\pi.$$

 $(dist(\cdot, \cdot))$ denotes the Hausdorff distance of sets.)

COROLLARY 2.

$$K_n = \max\{\|Z - Z^*\|/\|Z + Z^*\|; Z \in L(H), \sigma(Z) \subset \mathbb{R}, Z \neq 0\}$$

$$= \frac{2}{n} \sum_{1}^{\lfloor n/2 \rfloor} \operatorname{ctg} \frac{2s - 1}{2n} \pi;$$

$$K_n = \max\{\text{dist } \sigma(B), \text{ Re } \sigma(B+iC); B=B^*, C=C^*, \|C\| \le 1\}.$$

Using the inequalities

$$\int_{(2s-1)\pi/(2n)}^{(2s+1)\pi/(2n)} \operatorname{ctg} x < \frac{\pi}{2n} \left(\operatorname{ctg} \frac{2s+1}{2n} \pi + \operatorname{ctg} \frac{2s-1}{2n} \pi \right),$$

$$\frac{\pi}{n} \operatorname{ctg} \frac{2s-1}{2n} < \int_{(s-1)\pi/n}^{(s+1)\pi/n} \operatorname{ctg} x \qquad (1 < s < \lfloor n/2 \rfloor),$$

one may see that

$$\frac{1}{n}\operatorname{ctg}\frac{\pi}{2n} - \frac{2}{\pi}\operatorname{ln}\sin\frac{\pi}{2n} < K_n < \frac{2}{n}\operatorname{ctg}\frac{\pi}{2n} - \frac{2}{\pi}\operatorname{ln}\sin\frac{\pi}{n}$$

and that $K_n/\ln n \to 2/\pi$.

Infinite-dimensional case. Let H be a separable infinite-dimensional Hilbert space, and let A be a selfadjoint compact operator in H. λ_j^+ , λ_j^- , $j=1,2,\ldots$, denote the positive eigenvalues of A and -A, respectively, repeated according to multiplicity and arranged in decreasing order. If there are only n positive (negative) eigenvalues of A we set $\lambda_j^+ = 0$ ($\lambda_j^- = 0$) for j > n.

THEOREM 2.

$$\sup_{B=B^{\bullet}\in L(H)}\operatorname{dist}(\sigma(B),\operatorname{Re}\sigma(B+iA))=\frac{2}{\pi}\sum_{s=1}(\lambda_{s}^{+}+\lambda_{s}^{-})/(2s-1).$$

PROOF. It follows from the Macaev theorem [3, Theorem III.4.2], or from Corollary 1 that "sup" is not less than the right-hand side. Thus it suffices to prove that if $B = B^* \in L(H)$ then

$$\operatorname{dist}(\sigma(B), \operatorname{Re} \sigma(B + iA)) \le \frac{2}{\pi} \sum_{s=1} (\lambda_s^+ + \lambda_s^-) / (2s - 1). \tag{7}$$

It follows from the Weyl-von Neumann theorem [6, Theorem X.2.1] that there exists a compact selfadjoint operator K such that the operator B + K has a pure point spectrum. Then there exists a sequence $\{P_n\}_{1}^{\infty}$ of orthogonal projections in H converging strongly to the identity operator such that P_n is n dimensional and commutes with B + K. Define the operators B_n , C_n by the formulas

$$B_n = (1 - P_n)B(1 - P_n) + P_nBP_n, C_n = B_n + iP_nAP_n.$$

Since $B_n - B = P_n(K - KP_n) + (K - P_nK)P_n$ it follows from the compactness of K that $||B_n - B|| \to 0$. Since A is compact too we see that $||C_n - (B + iA)|| \to 0$. The operators B_n , C_n are compact perturbations of B; therefore their essential spectra are identical. These facts and the perturbation theorems [6, Chapter IV, §3] imply that

$$\operatorname{dist}(\sigma(B), \sigma(B_n)) \to 0, \quad \operatorname{dist}(\sigma(B + iA), \sigma(C_n)) \to 0.$$
 (8)

Note further that $\sigma(B_n) = \sigma((1 - P_n)B|_{(1 - P_n)H}) \cup \sigma(P_nB|_{P_nH})$, and $\sigma(C_n) = \sigma((1 - P_n)B|_{(1 - P_n)H}) \cup \sigma(P_n(B + iA)|_{P_nH})$. Consequently,

$$\operatorname{dist}(\sigma(B_n), \operatorname{Re} \sigma(C_n)) \leq \operatorname{dist}(\sigma(P_n B|_{P_n H}), \operatorname{Re} \sigma(P_n (B + iA)|_{P_n H}))$$

$$\leq \frac{1}{n} \sum_{s=1}^{\lfloor n/2 \rfloor} (\lambda_s^+ + \lambda_s^-) \operatorname{ctg} \frac{2s-1}{2n} \pi \leq \frac{2}{\pi} \sum_{s=1}^{\infty} (\lambda_s^+ + \lambda_s^-) / (2s-1), (9)$$

since the jth positive (negative) eigenvalue of $P_n A|_{P_n H}$, if it exists, is not greater (less) than λ_j^+ $(-\lambda_j^-)$, and $\operatorname{ctg}((2s-1)/2n)\pi \le 2n/(2s-1)\pi$. The desired inequality (7) now follows from (8) and (9).

REFERENCES

1. I. C. Gohberg, On connections between Hermitian components of nilpotent matrices and on an integral of triangular truncation, Bul. Akad. Stiince RSS Moldoven. 1 (1963), 27-37. MR 35 #2168. (Russian)

2. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, "Nauka", Moscow, 1965; English transl., Transl. Math. Monos., vol. 18, Amer. Math. Soc., Providence, R. I., 1969. MR 36 #3137; MR 39 #7447.

- 3. _____, Theory of Volterra operators and its applications, "Nauka", Moscow, 1967; English transl., Transl. Math. Monos., vol. 24, Amer. Math. Soc., Providence, R. I., 1970. MR 36 #2007; MR 41 #9041.
- 4. W. Kahan, Every $n \times n$ matrix Z with real spectrum satisfies $||Z Z^*|| < ||Z + Z^*|| (\log_2 n + 0.038)$, Proc. Amer. Math. Soc. 39 (1973), 235–241. MR 47 # 1833.
- 5. _____, Spectra of nearly Hermitian matrices, Proc. Amer. Math. Soc. 48 (1975), 11-17. MR 51 #5627.
- 6. T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Bd. 132, Springer-Verlag, New York, 1966. MR 34 #3324.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, 00-950, WARSAW, P. O. B. 137, POLAND