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SPECTRA OF OPERATORS WITH

FIXED IMAGINARY PARTS

ANDRZEJ POKRZYWA

Abstract. The aim of this paper is to obtain the best bound for the distance

between the eigenvalues of a Hermitian matrix B and the real parts of eigenvalues

of a matrix B + ¡A, where A is also Hermitian, in the terms of eigenvalues of A. A

similar problem in infinite-dimensional Hubert space is also considered.

This paper was inspired by the papers of Kahan [4], [5] and Gohberg [1]. The

obtained results may be regarded as the generalizations of some results of these

authors. A solution of the problem of Kahan, which consists of computing the best

constant in the inequality \\Z — Z*\\ < Kn\\Z + Z*\\ for all n X n matrices with

real spectrum, is obtained (Corollary 2).

Notations. Let H denote a complex Hubert space with the norm || • || and the

scalar product < • , • >. L(H) denotes the algebra of all bounded linear operators

acting in H. For an A G L(H), o(A) denotes the spectrum of A. For a compact

A G L(H), sx, s2, . . . denote the eigenvalues of VAA* , repeated according to

multiplicity and arranged in decreasing order.

Finite-dimensional case. In this section we assume that H is «-dimensional and

that A = A* is an operator in H with eigenvalues X, > A2 > ■ • •  > A,.

Lemma 1. There exists B = B* G L(H) such that o(A + iB) c R and

Proof. Let {t}}" be an orthonormal basis of H. Define operator S by the

formula

n

S - -< •, ex)e„ + 2 < • , <?,>,•-!•
2

The vectors vk = 2"_,exp(((2A: — l)/n)Jm)ej are mutually orthogonal eigenvectors

of S of norm n. When the basis {e,} is suitably chosen then

l   "
A = - 2>,< •, ü>,."  i
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We shall show that the operator

n

B = i  2   sign(¿ -jXAej, ek)( ■ , e¡}ek
kj=l

satisfies the thesis of our lemma.

Since A = 2J««i<j4&, ek} < • , ej~)ek we see that the matrix of the operator

n

A + iB = 2 <Aek, ek}( ■ , ek}ek + 2 £ {Aep ek}( • , e¡)ek
k~\ k<j

is triangular in the basis {e,}. Therefore the eigenvalues of A + iB are Xk(A + iB)

= (Aek, ek} = (1/«)27A,.. Hence a(A + iB) c R.

Note that

(Aej, ek} - / - 2 \<*y> »,>«». ** ) = - S A, exP(   ¿ „     (* ""/>"*)•

Now it is easy to verify that if we define the numbers ¿>y and the operator T by the

relations

" I   2s — 1     \ "~1
bj = -i 2 A, exp-—Jm\,       T - < •, e,>e„ + 2 < •, et+1>«t,

i=i \        « / ¿_i

then 5 = (1/h)2"~11£,T-/. Since the numbers A^T) = exp(2 tori/«) are the eigenval-

ues of T, the eigenvalues of B are

M*) - -^ 2 ¿,(A,(r)y -1 2 \ ctg iii—^i—!..
«7=1 " *=1 2w

Hence

PH = max|A,(5)| - i 2 K ctg ̂ -U
k n ,_, in

Lemma 2. If B = B* C L(H) and a(A + iB) c R f/ien

ll^ll < 7 2 \ ctg 2* ~ ! g.

Proof. By the theorem on triangular matrix form there exists an orthonormal

basis {e,}" of H such that ((A + iB)ek, e¡} = 0 = ((A - iB)eJt ek) for k <j. This

implies that /'(¿te,, ek} = <yle,, e¿> and i'<Äe\, e,> = -(Aek, e¡) for A: </. Since

{A + iBek, ek) c o(A + iB) c R and A, B are self adjoint, (Bek, ek} =0. Hence

B = 2,,*<5fc> eft>< • , «,>«* = -2,-* sign(./ - k)(Aej, ek>< ■ , ey>ek. Setting

< ■ , e,)e,- = £, we may write

fi = /2sign(A:-y)£^^, (1)
j, k

Since B = B* there is a unit eigenvector / of B such that \\B\\ = !<£/,/>|. If we

set < • ,/>/= F then tr BF = <5/,/>. Using properties of trace and (1) we see
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that

(± \\B\\ =) tr BF = tr(/2 sign(A: - j)EkAEjF\
V j,k I

= tri A 2 i sign(Â; - j)E}FEk\ =txAG, (2)

where we have set i 2y^ sign(A: — j)EjFEk = G. G is a selfadjoint operator. Let

to, > «2 > • • •  > w„ be its eigenvalues. It is shown in [1] that

w,-=-«„ + ,_,,       j = 1, 2, . . .,«, (3)

and that if  ||£/|| *= 0 for all j then for j < [/i/2] 2*_, arg(wy. + i\\EJ\\2) =

(2y - l)w/2. This means that

^^^^¿arctgillVllV«,)

(^¿WHV^-arctg^,< arc tgj

since the function arc tg is concave in the interval [0, oo]. Since tangent is an

increasing function in [0, tt/2) we obtain the inequality tg((2/ — l)w/(2n)) <

\/{na,), equivalent to

uj < - ctg V- i
it,      j = 1, 2, ..., n/2. (4)n     ~     2n

By continuity of eigenvalues (4) holds also when E}f = 0 for some j.

It follows from (3) that tr G = 0. Let fi > -\; then

Sj{A + ,i) - A,. + p. (5)

Let x be the normalized eigenvector of G, Gxj = UjX,. Since G is selfadjoint

{xj}" is an orthonormal basis for H. Thus, using Abel transformation, we may

write

tr AG = tr(^ + /i)G - 2 <(-* + m)Gx,, *,-> = 2 «/(^ + /*)■*;> */>

n -1 j n

=  2 («, - w,+ i) 2 <(^ + iO*Ar> **>+«„ 2 «z4 + /*)**> **>•    (6)
y=l Ä-1 *-l

The Ky-Fan lemma [2, Lemma II.4.1] and (5) imply that

2 <(A + mK> **>
*=i

< 2 %(¿ + »O - 2 (\ + m)-
*:=i *-i

Note also that if j = n then in the above inequality we have in fact the equality

without the modulus. Hence

n-1 7 n

trAG<  2 («> - S+i) 2 (A* + ft) + a„ 2 (A* + Ñ
y-l *=1 *-l

=  2 "A + ft) = 2 tyo,-.
7=1 7-1
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Writing the just obtained inequality with -A instead of A we obtain by (3) the

inequality -tr AG < 2,<o,.(-An+1_,) = 2yAyw,. This with (2), (3) and (4) shows that

I"/2]

||*|| = \trAG\ < 2 V; =   2 (Ay - K+i-jh
7 7 = 1

1 ["4?]„      y        v      2/-1 1¿,        2/-1
< - 2 (\ - W>* ^-* = - 2\ ctg J—w.

The lemma is proved.

Theorem 1. Suppose that B is a selfadjoint operator in H. Let {&}*, {/%}" 6e /«e

eigenvalues of B, B + iA, respectively, arranged in such a way that ßj > ßj+x,

Re fij > Re ¡iJ+, forj = 1,2,...,«— 1. Then

| /Î,. - Re M>| < - 2 K ctg -^^r-».
" j=i z/1

Proof. Following Kahan [5] and identifying the operators with matrices we may

assume that B + iA is an upper triangular matrix and that B + iA = D + iZ,

where D is a real diagonal matrix, Z is an upper triangular matrix with real

spectrum. Hence the numbers Re a are eigenvalues of D. Since B — D =

i{Z - Z*)/2 it follows from Weyl's inequality that \ß} - Re júj| < \\B - D\\ =

||Im Z||. Since Re Z = (Z + Z*)/2 = A the thesis follows from Lemma 2.

For a subset F of the complex plane let Re F = (Re À; X G F). The following

corollaries follow easily from the obtained results.

Corollary 1.

1   " 2s — 1
max      dist(a(5), Re a(B + iA)) = - 2 À, ctg -^-it.

b = b'sl(H) "      nx   s 2n

(dist( •, • ) denotes the Hausdorff distance of sets.)

Corollary 2.

Kn = max{||Z - Z*||/||Z + Z*||; Z G L(#), ct(Z) c R, Z # 0}

2 ["/2]       2,-1

"»   ?  Ctg-Jn-^

K„ = max{dist o(fi), Re o(B + iC); B = B*,C = C*, ||C|| < 1}.

Using the inequalities

r(2s+l)*/(2n) IT   ( 2s +  I 2s - 1     \
i-)V(2n) ctgx <^(ctg~^r*+ ctg-5—}

w 2s — 1       /•(s + i)»/" . „
~Ctg —-  <   I' CtgX (1<Í<[«/21),
« 2«        ^-i)w/„ L       J/

one may see that

1 W 2   ,        .        7T     ^   „     ^   2 7T 2..7T
7  Ctg ^ ~ ^ ln Sm T¿ < *"  <   «   Ctg ^ ~ ~Z  m Sm 7
ft Zft 77 Zft ft ¿ft TT ft

and that A^/ln n —» 2/tt.
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Infinite-dimensional case. Let H be a separable infinite-dimensional Hubert

space, and let A be a selfadjoint compact operator in H. Xf, XT, j =

1, 2, ... , denote the positive eigenvalues of A and -A, respectively, repeated

according to multiplicity and arranged in decreasing order. If there are only «

positive (negative) eigenvalues of A we set A,+ = 0 (A/ = 0) for j > n.

Theorem 2.

2
sup        dist(a(£), Re o(B + iA)) = - 2 (V + K)/ (2s ~ 0-

í = i'e¿(H) ff i-1

Proof. It follows from the Macaev theorem [3, Theorem III .4.2], or from

Corollary 1 that "sup" is not less than the right-hand side. Thus it suffices to prove

that if B = B* G L(H) then

dist(a(Ä), Re o(B + iA)) < - 2 (V + K)/ (2s ~ 0- (7)
* *-i

It follows from the Weyl-von Neumann theorem [6, Theorem X.2.1] that there

exists a compact selfadjoint operator K such that the operator B + K has a pure

point spectrum. Then there exists a sequence {Pn)\x' of orthogonal projections in H

converging strongly to the identity operator such that Pn is n dimensional and

commutes with B + K. Define the operators Bn, Cn by the formulas

B„ - (1 - Pn)B{\ - Pn) + PnBPn,       Cn = Bn + iPnAPn.

Since Bn - B = P„(K - KPJ + (K - P„K)P„ it follows from the compactness

of K that \\Bn - B\\ -h» 0. Since A is compact too we see that \\C„ - (B + iA)\\ -+ 0.

The operators B„, Cn are compact perturbations of B; therefore their essential

spectra are identical. These facts and the perturbation theorems [6, Chapter IV, §3]

imply that

dist(o(B), o(Bn)) -» 0,       dist(a(5 + iA), o(C„)) -> 0. (8)

Note further that a(Bn) = a((l - Pn)B\0_P)H) u a(PnB\PH), and o(C„) =

a((l - P„)B\0_Pm)H) U a(Pn(B + iA)\PnH). Consequentíy,

dist(o(B„), Re o(Cn)) < áist(a(P„B\PmH), Re a(P„(B + iA)\P¡>H))

1 [n/2] 2v - 1 2   °°

< 7 2 (a/ + x;)ctg ̂ —^ < | 2 (V + a;)/ (2, - l), (9)

since they'th positive (negative) eigenvalue of P„A\PH, if it exists, is not greater

(less) than X¡+ (-X/), and ctg((2s - l)/2ft)w < 2n/(2s — l)7r. The desired inequal-

ity (7) now follows from (8) and (9).
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