ON STANDARD SUBGROUPS OF TYPE ${}^{2}E_{6}(2)$

G. STROTH

ABSTRACT. The purpose of this paper is to close one of the last gaps in the classification of finite simple groups containing a standard subgroup. We prove that a simple group containing a standard subgroup of type ${}^{2}E_{6}(2)$ has to be isomorphic to F_{2} , the baby monster.

One of the remaining standard form problems is the classification of finite groups containing a standard subgroup of type ${}^{2}E_{6}(2)$. A quasi-simple group A is said to be a standard subgroup in a group G provided

- (i) $N_G(A) = N_G(C_G(A)),$
- (ii) $|C_G(A)|$ is even,
- (iii) $|C_G(A) \cap C_G(A)^g|$ is odd for all $g \in G N_G(A)$,
- (iv) $[A, A^g] \neq 1$ for all $g \in G$.

The purpose of this paper is to handle the case $A/Z(A) \simeq {}^2E_6(2)$ and 2||Z(A)|. Further we may assume $m_2(C_G(A)) = 1$. Otherwise a result due to M. Aschbacher and G. Seitz [2] yields $A \leq G$. Furthermore a Sylow 2-subgroup of $C_G(A)$ is cyclic. Otherwise the classical involution theorem due to M. Aschbacher [1] yields $A \leq G$. The case $A/Z(A) \cong {}^2E_6(2)$ and |Z(A)| odd has been treated by G. Seitz in [8]. In this paper we prove

THEOREM. Let G be a finite group, O(G) = 1, and A a standard subgroup in G such that $A/Z(A) \cong {}^2E_6(2)$ and |Z(A)| is even. Then $\langle A^G \rangle = A$ or $\langle A^G \rangle \cong F_2$, the baby monster.

This paper was initiated during the Group Theory conference at the University of California at Santa Cruz in 1979. I wish to thank this institution for its hospitality and the AMS and DFG for their support.

For the properties of ${}^{2}E_{6}(2)$ used in this paper see [11] and [10]. For the remainder suppose $A \leq G$.

1. Preliminary results.

(1.1) LEMMA. The group $X = {}^{2}E_{6}(2)$ possesses only one class of elements ω of order five, $C_{X}(\omega) \cong Z_{5} \times A_{8}$.

PROOF. [11, Lemmas (6.10) and (6.2)].

(1.2) LEMMA. Let ν be an element of order 11 in $X={}^2E_6(2)$. Then $|N_X(\langle \nu \rangle)|=110$ and $|C_X(\nu)|=22$.

Received by the editors November 19, 1979. 1980 Mathematics Subject Classification. Primary 20D05. 366 G. STROTH

PROOF. [11, Lemmas (7.8) and (6.5)].

- (1.3) Lemma. Let z be a 2-central involution in $X = {}^{2}E_{6}(2)$. Then
- (i) $C_x(z)$ is an extension of an extraspecial 2-group Q of width 10 with $PSU_6(2)$.
- (ii) All involutions of X are conjugated in X to elements of Q.
- (iii) Let T be a Sylow 2-subgroup of $C_X(z)$. Then $J(T/\langle z \rangle) = Q/\langle z \rangle$.
- (iv) $C_T(z)/Q$ contains exactly one elementary abelian subgroup of order 2^9 .
- PROOF. (i) follows from [10, Lemma 2]; (ii) follows from [10, Lemma 3]. An easy computation using the tables given in [11, pp. 502-505] yields (iii) and (iv).
- (1.4) LEMMA. Let X be a 2-fold covering group of ${}^2E_6(2)$. If $x \in X$ and $x^2 \in Z(X)$ then $x^2 = 1$.

Proof. [11, p. 503].

- (1.5) LEMMA. Let G be a finite group containing an involution d such that $C_G(d)/O(C_G(d))$ is a 2-fold covering of ${}^2E_6(2)$. Let $S \in \mathrm{Syl}_2(C_G(d))$. Then Z(S) is elementary abelian of order 4. Let B be a Sylow 2-subgroup of $O_{2',2}(C_G(Z(S)))$ and g a 2-element normalizing B and acting trivially on $C_G(Z(S))/O_{2',2}(C_G(Z(S)))$. Then [g,d]=1 or
 - (i) $\langle B, g \rangle = C$ is extraspecial of width 11 and
 - (ii) $|N_G(C)/C_G(C)C| = 2^{17} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$.

PROOF. |Z(S)| = 4 follows from Lemmas (1.3) and (1.4). As in the proof of [11, Lemma (4.4)] the existence of a field automorphism of ${}^{2}E_{6}(2)$ is not used. Application of [11, Lemma (4.4)] proves (i). The same argument is possible for [11, Lemmas (4.6) and (4.7)]. This yields (ii).

2. Proof of the theorem.

(2.1) Lemma. A Sylow 2-subgroup of $C_G(A)$ is of order 2.

PROOF. Let $T_1 \in \operatorname{Syl}_2(A)$. Then $Z(T_1) = \langle z, d \rangle$ is of order $4, \langle d \rangle \in \operatorname{Syl}_2(Z(A))$. Let Y be the preimage of $J(T_1/Z(T_1))$. Then $Y' = \langle z \rangle$, by Lemma (1.3). Let $T \in \operatorname{Syl}_2(N_G(A))$. Then $Z(T) = \langle z, S \rangle$, $S \leqslant C_G(A)$. Furthermore $\langle z \rangle$ char T. Let $S_1 = T \cap C_G(A)$ and Y_1 the preimage of J(T/Z(T)). Then $Z(Y_1) = \langle z, S_1 \rangle$.

Assume $|S_1| > 4$. Then $T \in \operatorname{Syl}_2(G)$. By Lemmas (1.3)(ii) and (1.4) each involution of $AC_G(A)$ is conjugate in A to an involution in Y_1 . Let $y \in Y_1$, $d \neq y \sim d$ in G. Then $|Y_1: C_{Y_1}(y)| = 2$. Let $T_2 = C_T(y) \in \operatorname{Syl}_2(C_{N_G(A)}(y))$ and $T_3 \subseteq C_G(y)$, $|T_3: T_2| = 2$. As $\Omega_1(\phi(Z(C_{Y_1}(y)))) = \langle d \rangle$, $C_{Y_1}(y) \triangleleft T_3$. Choose $t \in T_3 - T_2$. As $y \sim yz$ and $d \sim dz$ in G we get $z' \neq z$, otherwise $\langle z, y \rangle = \Omega_1(Z(T_3)) \sim \Omega_1(Z(T)) = \langle z, d \rangle$. Hence $C_{Y_1}(y) \cap C_{Y_1}(y)^t$ has to be elementary abelian. But this yields that $C_{Y_1}(y)^t C_{Y_1}(y) / C_{Y_1}(y)$ is abelian of rank at least 10. This contradicts Lemma (1.3)(iv) and the structure of $\operatorname{Out}(^2E_G(2))$ [9]. Thus $d^G \cap AC_G(A) = d$. Let y be an involution in $N_G(A) - C_G(A)A$. Then there is a four group V contained in A such that $Vy \subseteq y^G$. Let $g \in G$ with $y^g = d$. Then $V^g \cap AC_G(A) \neq 1$. But this contradicts $d^G \cap AC_G(A) = d$. Thus $d^G \cap N_G(A) = d$. Now application of [3] yields the contradiction $A \bowtie G$.

(2.2) LEMMA. $|G:N_G(A)|$ is even.

PROOF. Suppose $|G:N_G(A)|$ to be odd. Let $T \in \operatorname{Syl}_2(N_G(A))$. Then $Z(T) = \langle d,z\rangle$, $\langle d\rangle \in \operatorname{Syl}_2(Z(A))$. Let E be the preimage of J(T/Z(T)). By Lemma (1.3) we have that E is the direct product of $\langle d\rangle$ with an extraspecial group of width 10. Furthermore $E' = \langle z \rangle$. By Lemma (1.3)(ii) every involution of A is conjugate in A to an involution of E. Let $y \neq d$ be an involution in E such that $y \sim d$ in G. As $d \nsim z \nsim dz \nsim d$, $y \sim yz$ in G. Further $|E:C_E(y)|=2$. Set $T_1=C_T(y)$. We may assume $T_1 \in \operatorname{Syl}_2(C_{N_G(A)}(y))$. Let $T_2 \leq C_G(y)$, $|T_2:T_1|=2$ and $x \in T_2-T_1$. Then $z^x \neq z$, otherwise $\langle z,y\rangle \sim \langle z,d\rangle$. Hence $C_E(y)^x \neq C_E(y)$. Thus $|C_E(y)^x C_E(y)/C_E(y)| \geqslant 2^9$. Now Lemma (1.3)(iv) yields that $C_E(y)^x C_E(y)/C_E(y)$ is uniquely determined. But then (see [7, Lemma 1]) $C_E(C_E(y)^x)$ contains only involutions conjugate to d, z or dz in A. This is a contradiction. Hence $d^G \cap C_G(A)A = d$.

Suppose $y \in N_G(A) - A$, $y \sim d$ in G. Then A contains a fours group V such that $Vy \leq y^G$. But this contradicts $d^G \cap C_G(A)A = d$. Thus $d^G \cap N_G(A) = d$. Now the application of [3] yields the contradiction $A \leq G$.

(2.3) LEMMA. There are involutions in $N_G(A)$ acting as field automorphisms on A/Z(A). In particular $|N_G(A):C_G(A)A|=2$.

PROOF. According to Lemma (2.2) $d \sim dz$ in G. Thus there is a 2-element g in $N_G(\langle d, z \rangle)$ with $d^g = dz$. Suppose $N_G(A) = C_G(A)A$. By Lemma (1.3)(i) $N_{N_G(A)}(\langle d, z \rangle)/O_{2,2}(N_{N_G(A)}(\langle d, z \rangle)) \cong PSU_6(2)$. Assume

$$[g, N_{N_{c}(A)}(\langle d, z \rangle)] \subseteq O_{2,2}(N_{N_{c}(A)}(\langle d, z \rangle)).$$

Set $C = \langle O_2(C_G(\langle d, z \rangle)), g \rangle$. Then Lemma (1.5) yields that C is extraspecial of width 11 and $|N_G(C)/C_G(C)C| = 2^{17} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$. Let t be a 2-central involution in $C_G(\langle d, z \rangle)/O_2(C_G(\langle d, z \rangle))$. Set $\overline{N_G(C)} = N_G(C)/C_G(C)C$ and $\widetilde{C} = C/\langle z \rangle$. Now $\overline{X} = O_2(C_{\overline{N_G(C)} \cap N_G(A)}(\overline{t}))$ is extraspecial of width 4. Furthermore $C_{\overline{N_G(C)} \cap N_G(A)}(\overline{t})/\overline{X} \cong U_4(2)$; Lemma (1.3)(i). The group \overline{X} centralizes in \widetilde{C} a subgroup of order 2^7 , see [11, Lemma (5.1)]. As $C_{\overline{N_G(C)} \cap N_G(A)}(\overline{t})$ induces on $(\widetilde{Y}/\langle \widetilde{d} \rangle)^{\sharp}$ two orbits of length 27 and 36, we get that \overline{d} possesses exactly 28 conjugates under the action of $N_{\overline{N_G(C)}}(\overline{X})$. Thus $N_{\overline{N_G(C)}}(\overline{X})/\overline{X}$ is of order $2^8 \cdot 3^4 \cdot 5 \cdot 7$. As $U_4(2)$ is involved we get that this group has to be simple. Checking the list of groups in [5] we get a contradiction. Thus we have that g induces an outer automorphism on $N_{N_G(A)}(\langle d, z \rangle)/O_{2,2}(N_{N_G(A)}(\langle d, z \rangle))$. Then by Lemma (1.3)(i) $O_2(N_{N_G(A)}(\langle d, z \rangle))/\langle z \rangle$ is the unique elementary abelian subgroup of order 2^{21} in a Sylow 2-subgroup of $N_G(\langle d, z \rangle)/\langle z \rangle$. Hence $d^{C_G(z)} \cap O_2(N_{N_G(A)}(\langle d, z \rangle)) = \{d, dz\}$.

Assume now $O(N_G(A)) \neq 1$. Let T be a Sylow 2-subgroup of A containing z. Then $C_G(T) = O(N_G(A))\langle z, d \rangle$. Thus $d \sim dz$ in $N_G(O(N_G(A)))$. Now by induction we get that $AO(N_G(O(N_G(A))))$ is normal in $N_G(O(N_G(A)))$. But this is a contradiction. Thus $O(N_G(A)) = 1$.

Let ω be an element of order five in $C_G(z) \cap N_G(A)$. By Lemma (1.1) we may

368 G. STROTH

assume $d \sim dz$ in $C_G(\omega)$. By Lemmas (1.1) and (1.4) we have $C_A(\omega)/\langle \omega \rangle \simeq \langle d \rangle \times A_8$. Let S be a Sylow 2-subgroup of $C_A(\omega)$. Then S contains an elementary abelian subgroup B of order 32. Because of $d^{C_G(z)} \cap O_2(N_A(\langle d, z \rangle)) = \{d, dz\}$ we get that d has exactly 10 conjugates under $N_{C_G(\omega)}(B)$. As A_6 contains no subgroup isomorphic to $\Sigma_3 \times \Sigma_3$ we get $O_3(N_{C_G(\omega)}(B)/C_{C_G(\omega)}(B))$ is nontrivial. But then we get the contradiction that d is weakly closed in B with respect to $N_{C_G(\omega)}(B)$.

Hence we have shown that $|N_G(A): C_G(A)A| = 2$. Then we may assume that $[g, N_{N_G(A)}(\langle d, z \rangle)] \subseteq O_{2,2}(N_{N_G(A)}(\langle d, z \rangle))$, as $Out(PSU_6(2)) \cong \Sigma_3$, see [9]. By Lemma (1.2) we may assume that g centralizes an element v in $N_{N_G(A)}(\langle d, z \rangle)$ with $v^{11} \in O(C_G(A))$. By Lemma (1.2) we get that a Sylow 2-subgroup S_1 of $N_G(\langle v \rangle) \cap N_{N_G(A)}(\langle d, z \rangle)$ is of order eight. Clearly S_1 is abelian. We may assume that g normalizes S_1 . Thus $d \notin \phi(S_1)$. Then S_1 has to be elementary abelian. Thus there is an involution in $N_G(A) - C_G(A)$ normalizing a subgroup of order 11 in A. Now the structure of $Aut(^2E_6(2))$ [9] yields that this involution induces a field automorphism on A/Z(A).

(2.4) LEMMA. We have $\langle A^G \rangle \simeq F_2$.

PROOF. By Lemma (2.3) and [11] it is enough to show $O(N_G(A)) = 1$. Suppose $K = O(N_G(A)) \neq 1$. Let $C = F^*(C_A(\langle d, z \rangle))$. As $d \sim dz$ in G, $d \sim dz$ in $N_G(C)$. We have $C_G(C) = K\langle d, z \rangle$. Thus $d \sim dz$ in $N_G(K)$. As $A \leq N_G(K)$ we get by induction $N_G(K)/O(N_G(K)) \cong F_2$ and $[K, \langle A^{N_G(K)} \rangle] = 1$. Let Y be a Sylow 2-subgroup of $F^*(C_{N_G(K)}(z))$. Then Y is extraspecial of width 11. The conjugacy classes of involutions in $N_{N_G(K)}(Y) - Y$ are listed in [11, Table VI]. Let X be such an involution. Then it is easy to see that $C_{N_{N_G(K)}(Y)}(T) = Z(T) \times K$, for $T \in \operatorname{Syl}_2(C_{N_{N_G(K)}(Y)}(x))$. Thus $d \nsim x$ in $C_G(z)$. Thus the weak closure of d in $N_G(Y)$ with respect to $C_G(z)$ is contained in Y. Then Y is strongly closed in $N_G(Y)$ with respect to $C_G(z)$. Application of [4] yields now $C_G(z) \subseteq N_G(K)$. Now the structure of centralizers of involutions in $N_G(K)$ yields that $N_G(K)$ controls G-fusion of 2-central involutions in $N_G(K)$. But then $G = N_G(K)$ by Holt's theorem [6]. This contradicts O(G) = 1. The lemma is proved.

REFERENCES

- 1. M. Aschbacher, A characterization of Chevalley groups over fields of odd characteristic, Ann. of Math. 106 (1977), 353-468.
- 2. M. Aschbacher and G. Seitz, On groups with a standard component of known type, Osaka J. Math. 13 (1976), 439-482.
 - 3. G. Glauberman, Central elements in core free groups, J. Algebra 4 (1966), 403-421.
 - 4. D. M. Goldschmidt, 2-fusion in finite groups, Ann. of Math. 99 (1974), 70-117.
 - 5. M. Hall, Simple groups of order less than one million, J. Algebra 20 (1972), 98-102.
- 6. D. Holt, Transitive permutation groups in which an involution central in a Sylow 2-subgroup fixes a unique point, Proc. London Math. Soc. 37 (1978), 165-192.
- 7. A. Reifart, On finite simple groups with large extraspecial subgroups, I. J. Algebra 53 (1978), 452-470.
 - 8. G. Seitz, Chevalley groups as standard subgroups, I. Illinois J. Math. 23 (1979), 36-57.
 - 9. R. Steinberg, Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606-615.
 - 10. G. Stroth, Eine Kennzeichnung der Gruppe ${}^{2}E_{6}(2^{n})$, J. Algebra 35 (1975), 534-547.
- 11. _____, A characterization of Fischer's sporadic simple group of the order $2^{41} \cdot 3^{13} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$, J. Algebra 40 (1976), 499–531.

Freie Universität Berlin, II. Mathematisches Institut, Königin-Luise-Strasse 24-26, D-1000 Berlin 33, Germany