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ON STANDARD SUBGROUPS OF TYPE 2E((2)
G. STROTH

ABSTRACT. The purpose of this paper is to close one of the last gaps in the
classification of finite simple groups containing a standard subgroup. We prove
that a simple group containing a standard subgroup of type 2E¢(2) has to be
isomorphic to F,, the baby monster.

One of the remaining standard form problems is the classification of finite
groups containing a standard subgroup of type 2E¢(2). A quasi-simple group A is
said to be a standard subgroup in a group G provided

@) No(4) = No(C(4)),

(ii) | C5(A4)) is even,

(iii) |Cg(A) N Cg(A)%| is odd for allg € G — Ng(A),

(iv) [4, A%]# 1 for all g € G.

The purpose of this paper is to handle the case A/Z(A) = 2E4(2) and 2| |Z(A4)|.
Further we may assume m,(C;(A4)) = 1. Otherwise a result due to M. Aschbacher
and G. Seitz [2] yields A < G. Furthermore a Sylow 2-subgroup of C;(A) is cyclic.
Otherwise the classical involution theorem due to M. Aschbacher [1] yields 4 < G.
The case A/Z(A) =2E,2) and |Z(4)| odd has been treated by G. Seitz in [8]. In
this paper we prove

THEOREM. Let G be a finite group, O(G) = 1, and A a standard subgroup in G
such that A/ Z(A) = 2E«?2) and | Z(A)| is even. Then (A®) = A or (A®) = F,, the
baby monster.

This paper was initiated during the Group Theory conference at the University
of California at Santa Cruz in 1979. I wish to thank this institution for its
hospitality and the AMS and DFG for their support.

For the properties of 2E4(2) used in this paper see [11] and [10]. For the
remainder suppose 4 < G.

1. Preliminary results.

(1.1) LEMMA. The group X = 2E((2) possesses only one class of elements w of order
five, Cy(w) = Z5 X A,
PRrROOF. [11, Lemmas (6.10) and (6.2)].

(1.2) LEMMA. Let v be an element of order 11 in X = 2E¢(2). Then |Nyx({»>)| =
110 and |Cy(»)| = 22.
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PrOOF. [11, Lemmas (7.8) and (6.5)].

(1.3) LEMMA. Let z be a 2-central involution in X = 2E(2). Then

(i) Cx(2) is an extension of an extraspecial 2-group Q of width 10 with PSU2).
(ii) Al involutions of X are conjugated in X to elements of Q.

(iii) Let T be a Sylow 2-subgroup of Cy(z). Then J(T/{z)) = Q/{z).

(iv) C(2)/ Q contains exactly one elementary abelian subgroup of order 2%,

PrOOF. (i) follows from [10, Lemma 2]; (ii) follows from [10, Lemma 3]. An easy
computation using the tables given in [11, pp. 502-505] yields (iii) and (iv).

(1.4) LEMMA. Let X be a 2-fold covering group of 2E¢(2). If x € X and x* € Z(X)
then x* = 1.

ProoF. [11, p. 503].

(1.5) LeMMA. Let G be a finite group containing an involution d such that
Cs(d)/ O(Cy(d)) is a 2-fold covering of *E¢(2). Let S € Syl,(Cz(d)). Then Z(S) is -
elementary abelian of order 4. Let B be a Sylow 2-subgroup of Oy ,(Cz(Z(S))) and g
a 2-element normalizing B and acting trivially on C5(Z(S))/ Oy (Cs(Z(S))). Then
[g,d]=1or

(i) {B, g> = C is extraspecial of width 11 and

(ii) |[Ng(C)/Cx(C)C| = 2"7-36. 5. 7- 11 - 23.

PRrOOF. |Z(S)| = 4 follows from Lemmas (1.3) and (1.4). As in the proof of [11,
Lemma (4.4)] the existence of a field automorphism of 2E¢(2) is not used. Applica-
tion of [11, Lemma (4.4)] proves (i). The same argument is possible for [11,
Lemmas (4.6) and (4.7)). This yields (ii).

2. Proof of the theorem.
(2.1) LEMMA. A Sylow 2-subgroup of Cy(A) is of order 2.

ProOF. Let T, € Syl,(4). Then Z(T,) = {z, d) is of order 4, {d) € Syl,(Z(A4)).
Let Y be the preimage of J(T,/Z(T,)). Then Y’ = (z), by Lemma (1.3). Let
T € Syl,(Ng4(A)). Then Z(T) = {z, S), S < C;z(A). Furthermore {z)char T. Let
S, = T N Cgz(A) and Y, the preimage of J(T/Z(T)). Then Z(Y,) = <z, S,).

Assume |S,| > 4. Then T € Syl,(G). By Lemmas (1.3)(ii) and (1.4) each involu-
tion of AC;(A) is conjugate in 4 to an involution in Y,. Lety € Y, d *y ~d in
G. Then |Y;: Cy(»)| =2. Let T, = C(y) € Syl,(Cy,(») and T; C Cs(y),
|Ty: Tyl = 2. As HZ(Cy, (1)) = <d), Cy(»)< Ts. Choose t € T; — T,. As
y ~yz and d =~ dz in G we get z' # z, otherwise (z,y) = Q,(Z(T3)) ~ 2,(Z(T))
= (z,d). Hence Cy(») N Cy (») has to be elementary abelian. But this yields
that Cy (»)'Cy (¥)/ Cy,(») is abelian of rank at least 10. This contradicts Lemma
(1.3)(iv) and the structure of Out(*E¢(2)) [9]. Thus d¢ N ACz(4) = d. Let y be an
involution in Ng(A4) — C;(A)A. Then there is a fours group ¥ contained in 4 such
that ¥y C y°. Let g € G with y8 = d. Then V% N ACy(4) # 1. But this con-
tradicts d° N AC;(A) = d. Thus d° N Ng4(A4) = d. Now application of [3] yields
the contradiction 4 < G.
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(2.2) LEMMA. |G : Ng(A4)| is even.

PROOF. Suppose |G : N;(A4)| to be odd. Let T € Syl,(N4(4)). Then Z(T) =
{d, z), {d) € Syl,(Z(A)). Let E be the preimage of J(T/Z(T)). By Lemma (1.3)
we have that E is the direct product of (d) with an extraspecial group of width 10.
Furthermore E’ = {z). By Lemma (1.3)(ii) every involution of A4 is conjugate in 4
to an involution of E. Let y # d be an involution in E such that y ~ d in G. As
d~z~dz ~d,y~yzin G. Further |E : Cg(y)| = 2. Set T, = C(y). We may
assume T, € SyL,(Cy (»)- Let T, < Co(»), |T,:T}|=2 and xE€ T, - T,
Then z* # z, otherwise (z, y) ~ (z,d). Hence Cg(y)* # Cg(y). Thus
|Ce(¥Y*Ce(»)/ Cg(»)] > 2°. Now Lemma (1.3)(iv) yields that C(y)*Cg(»)/ CA»)
is uniquely determined. But then (see [7, Lemma 1]) Cg(Cg(»)*) contains only
involutions conjugate to d, z or dz in A. This is a contradiction. Hence d¢ N
Cs(A)A = d.

Suppose y € N;(A) — A, y ~d in G. Then A contains a fours group V such
that ¥y < y©. But this contradicts d° N C;(4)4 = d. Thus d° N Ny(4) = d.
Now the application of [3] yields the contradiction 4 < G.

(2.3) LEMMA. There are involutions in Ng(A) acting as field automorphisms on
A/ Z(A). In particular |[Ng(A) : Cz(A)A| = 2.

PrROOF. According to Lemma (2.2) d ~ dz in G. Thus there is a 2-element g in
Ngs({d, z)) with d® = dz. Suppose Nj(4) = Cz(A)A. By Lemma (1.3)(i)
NNG(A)(<d’ z3)/ 02,2'(NNG(A)(<d9 z))) = PSU(2).

Assume

[ & Ny (K4, z})] c 02,2’(NNG(A)(<da z))).

Set C = {0x(C4z({d, z))), g>. Then Lemma (1.5) yields that C is extraspecial of
width 11 and |Ng(C)/Cz(C)C| =2"7-3%-5%-7-11-23. Let ¢t be a 2-central
involution in Cy({d, z))/ 0,(Cs({d, z))). Set N;(C)= Ngz(C)/Cx(C)C and ¢ =
C/{z>. Now _)_(_ = OZ(CW({)) is extraspecial of width 4. Furthermore
Crgonnga(t)/ X = Uy2); Lemma (1.3)(i). The group X centralizes in C a
smtbgrclup of order 27, see [11, Lemma (5.1)]. As Cm(t-) induces on
(Y/{d>)* two orbits of length 27 and 36, we get that d possesses exactly 28
conjugates under the action of N5 c5(X). Thus Ny_e(X)/ X is of order 28- 3*. 5
- 7. As U,(2) is involved we get that this group has to be simple. Checking the list of
groups in [S] we get a contradiction. Thus we have that g induces an outer
automorphism on Ny ({4, z))/ 0,(Ny_4(<d, z))). Then by Lemma (1.3)i)
Ox(Ny 14, 2))) /<z) is the unique elementary abelian subgroup of order 2%! in a
Sylow 2-subgroup of Ng(<d, z))/<z). Hence d%® N Oy(Ny <4, 2))) =
{d, dz}.

Assume now O(Ng;(A4)) # 1. Let T be a Sylow 2-subgroup of A4 containing z.
Then Cg(T) = O(Ng(A))Xz,d). Thus d ~ dz in Ng(O(Ng(A))). Now by induc-
tion we get that AO(Ng(O(Ng(A)))) is normal in N;(O(Ng(A))). But this is a
contradiction. Thus O(Ng(4)) = 1.

Let w be an element of order five in C;(z) N Ng(A4). By Lemma (1.1) we may
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assume d ~ dz in Cgz(w). By Lemmas (1.1) and (1.4) we have C, (w)/{w) = {(d) X
Ag. Let S be a Sylow 2-subgroup of C,(w). Then S contains an elementary abelian
subgroup B of order 32. Because of < N 0,(N,({d, z))) = {d, dz} we get that
d has exactly 10 conjugates under Nc_,(B). As A4 contains no subgroup isomor-
phic to 2, X =; we get 03(NCG(0)(B)/ Ccyw)(B)) is nontrivial. But then we get the
contradiction that d is weakly closed in B with respect to Nc_,(B).

Hence we have shown that |Ng(A4): Cz(A)A| = 2. Then we may assume that
[8 Nuyuy(Kd, 2))] C 0,2(Ny 44, 2))), as Ou(PSUg(2)) = Z;, see [9]. By
Lemma (1.2) we may assume that g centralizes an element » in N, Ne( 4({d, z)) with
»'!' € O(C4(A)). By Lemma (1.2) we get that a Sylow 2-subgroup S, of Ns({»>) N
Nyg 4({d, z)) is of order eight. Clearly S, is abelian. We may assume that g
normalizes S;. Thus d & ¢(S,). Then S, has to be elementary abelian. Thus there is
an involution in N;(A4) — C;(A) normalizing a subgroup of order 11 in 4. Now the
structure of Aut(’E¢(2)) [9] yields that this involution induces a field automorphism
on A/Z(A).

(2.4) LEMMA. We have (A®) = F,.

ProOOF. By Lemma (2.3) and [11] it is enough to show O(Ng(A4)) = 1. Suppose
K = O(Ng(A4)) # 1. Let C = F*(C,(d, z))). Asd~dz in G, d ~ dz in Ng(C).
We have C;(C) = K{d, z). Thus d ~dz in Ng(K). As A < Ng(K) we get by
induction Ng(K)/ O(Ng;(K)) = F, and [K, {(A™®)3] = 1. Let Y be a Sylow 2-sub-
group of F*(Cy_(x)(2)). Then Y is extraspecial of width 11. The conjugacy classes
of involutions in Ny x(Y) — Y are listed in [11, Table VI]. Let x be such an
involution. Then it is easy to see that C o n(T)=ZT) X K, for T €
Syl,( CNNG(K)(Y)(x)). Thus d = x in Cg(z). Thus the weak closure of d in Ng(Y) with
respect to C;(z) is contained in Y. Then Y is strongly closed in N;(Y') with respect
to Cs(z). Application of [4] yields now Cg(z) C Ng(K). Now the structure of
centralizers of involutions in Ng(K) yields that N;(K) controls G-fusion of
2-central involutions in Ng(K). But then G = N4 (K) by Holt’s theorem [6]. This
contradicts O(G) = 1. The lemma is proved.
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