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LOCALLY FINITE-DIMENSIONAL ALGEBRAS

DANIEL R. FARKAS AND ROBERT L. SNIDER1

Abstract. Von Neumann regularity of some locally finite-dimensional algebras is

studied.

C. Lanski has asked [3] whether every simple algebraic algebra over a field is von

Neumann regular. Along the same lines, Handelman asks whether a regular locally

finite-dimensional algebra is locally semisimple. In this note we answer Lanski's

question in the negative and discuss some of the subtleties of the second problem.

1. An example. Assume R is any ring with 1. Let T(R) denote the ring R[x]/(x2),

the polynomial ring over R modulo the ideal generated by x2. We denote the image

of x in T(R) by £. We remind the reader of the universal property for this

construction: a ring homomorphism from T(R) to 5 is completely specified by a

homomorphism R —* S and an assignment £ h> a where a G S has square zero and

centralizes the image of R.

We are interested in the case R = Mn(k), the full ring of /t X n matrices over the

field k. (Extending the earlier notation, £n will denote the image of x in T(Mn(k)).)

Since this choice of R is a simple ring, it is easy to check that the only two-sided

ideals of T(R) are zero, the entire ring and T(R)£n.

Again for R = Mn(k) we can define a map <pn: T(R) -► T(R ®k R) by sending r

in R to r ® 1 and by sending £„ to (1 ® eXn) + (1 ® bn)£n2. Here eXn is the usual

matrix unit and b„ is the n X n matrix exhibiting the similarity of eXn and — eXn:

bn(eXn)b-l = -eXn.

Lemma. Suppose <p„: T(R) -> T(R ®k R) is as above, and <pn(u + v£„) =

u'+ i/£„2.

(i) If v is invertible so is v'.

(ii) rk(w') < (rk(u) + 1)«.

Proof, u' + v%2 = (w ® 1 + v ® eXn) + (t> <8> ¿>n)£„2. Since bn is invertible, t; ®

bn is invertible if and only if v is.

rk(w <8> 1 + v <8> ex„) < rk(u ® 1) + rk(t? ® <?,„) < rk(w) • n + n ■ 1.    □

Proposition. Let ?T be the direct limit

T(M4(k))^T(MAk))^T(M4.(k))^ ....

-
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Then 9" is a locally finite-dimensional simple algebra and there is no w G f) such that

zwz = z for z the image of £, in 9\

Proof. Write fin) = 22" and notice that/(n)2 = fin + 1). The direct limit is built

up from T(Mm(k)) -^  T^^^k)). Let t^ + t^n)^n) be the image of £4 in

Mfin)(k). We estimate the rank of un by applying induction to the lemma:

rk^) < (fin) - 4)/3.

Now it easily follows that rk(Ußn)) < f(n)/2.

If zwz = z in the limit ?T then a similar equality holds at some stage. There is an

x + y£An) G T(Mm(k)) such that

("*„) + VAn$(x + yO(uJ(n) + Vfl.n)0 = "fl") + vfi,n)l

Comparing coefficients of £ (and temporarily dropping some subscripts to relieve

the clutter), umxvM + vAn)xuM) + uKn)yum = vKn). Since vm is invertible,

fin) = rk(t^n)) = r)a(uñn) ■ (xv + yu) + (vx)uAn))

<2rk(ufin))<f(n),

a contradiction.

The nature of a direct limit immediately implies that 5" is locally finite-

dimensional. As to simplicity, each nonzero element of "3" has a nonzero ancestor

c + </£, in some T(Mv(k)). We have already remarked that if the ideal generated by

c + di, in T(Mv(k)) does not contain 1 then c — 0 and this ideal must be

generated by £,• Replace the original element in 9" with the image of £„. This

element is also the image of <p„(|„) ■ 1 ® elp + (1 ® ¿>„)£^ and the ideal generated

by it in T(M^(k)) contains 1.    □

Observe that the example is a locally finite, countable dimensional, simple

algebra which is not a direct limit of semisimple Artinian subalgebras.

2. Regular algebras. The authors tried to construct a von Neumann regular,

locally finite-dimensional algebra which is not locally semisimple by modifying the

procedure in the first section. Contrary to our expectations, these specially con-

structed algebras are indeed locally semisimple. More precisely, any direct limit

limy MTU)(k)[x]/(x°<J)) which is regular, is also locally semisimple.

This is established by extending a calculation of Levitzki [5].

Theorem. A nilpotent element in a von Neumann regular k-algebra R is contained

in a subalgebra isomorphic to a finite product of matrix algebras over k.

Proof. Say a" = 0, a"~x =£ 0 for some a G R. We argue by induction on n. By

regularity, we can find a b G R such that a"~iba"~i = a""1 and ba"~xb = b.

For 1 < i,j < « define e0 = a"~ibaJ'x, E, = e„ ° el+x ,+ 1 » • • • ° em and En + X

= 0;f0 = e¡j(\ — Ej+X) (here e ° e' = e + e' - ee'). Observe

(i)E, G Ra'-\

00

*"{5.for i = 1,

,,    for/ > 1.
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Indeed, aey = fl'-^'W"1.

(iii)

;     Í 0     ÎOTJ = ft,

JiJ°     \fiJ+i   for j<n.

If i,j > 1, aey - e¡_XJ = ei_XJ_xa, so E,a = aEt+x for r = I,..... ». Thus/^-a =

*/,(! - £,+ .)<* = «tfO(l - EJ+2) = e,,, + 1(l - Ej+2) = />+1 for; < n.

(iv) Set/ = /„ + f22 + ■ ■ ■ +fm. Then af = fa = 2y> ,.£_,.,.

Apply (ii) and (iii).

(v)a"-1/= a--'.

By (ii), a"-*/ = /,„ = eXn = a-'te-1 = a""1.

We next claim that the/., are matrix units. Calculating,

fijfjk = eij\} ~ Ej+l)ejk\l — ̂ k+l)-

But (Ej+x)eJk G RaJa"-Jbak-1 = 0, so

/<£ = W1 - £*+i) = «"-'¿«"-W-'O - £A+l)

= a"-/6a*-1(l-^ + i)=^.

Since fiJfkl = fjfjjfkkfici, we will be done once we show f^f^ = 0 for / =^= A:. If

7 > k then j + n - k > n implies £>+1e^ G RaJa"~kR = 0. Thus j^ =

ei/e**(l — ̂ fc+i) = 0. On the other hand, if j < k then a result on page 49 of [4]

states that Ej+Xekk = ew. Thusj(j/tt = e^e^ - e^)(l - Ek+X) = 0.

Finally consider the matrix algebra spanned by the L. The element af is inside,

by (iv). According to (v), (1 —/)a"_1 = 0; successive application of (iv) yields

{(1 - f)a(\ - fy)n~x = 0. By induction, (1 - f)a(\ -/) is contained in an ap-

propriate semisimple subalgebra of (1 — f)R(\ — f). We put together the pieces by

observing that a = af + (1 - f)a(\ - f).

Notice that there is no problem in enlarging the semisimple algebra to contain 1

if we insist that subalgebras share the identity element with the entire algebra.   □

We return to the direct limit mentioned at the beginning of this section. Local

semisimplicity follows from the

Corollary. // 5 » Mn(k)[x]/(xm) is a subring (with the same 1) of the von

Neumann regular k-algebra R then S is contained in a finite-dimensional semisimple

subalgebra of R.

Proof. Write S = A + Ai where A s Mn(k) and | is the image of x in S.

Certainly £ centralizes A. It is well known [4] that R = A ®kC (at Mn(C)) where

C is the centralizer of A in R. A straightforward manipulation with matrix units

shows that C- 1 is a C-C-bimodule summand of Mn(C) and that, as a result, the

regularity of Mn(C) forces C to be regular. Apply the theorem to £ in C: There is a

finite-dimensional subalgebra B of C which contains | and is a product of matrix

algebras over k. Clearly A <8)k B has the same form and it contains S.   □

Another suggestive consequence of the theorem is that when k is algebraically

closed, every algebraic element in a von Neumann regular /c-algebra is contained in

a finite-dimensional semisimple subalgebra.
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On the basis of the corollary, one might conjecture that (over an algebraically

closed field) a finite-dimensional subalgebra of a regular algebra is contained in a

finite-dimensional semisimple subalgebra. This is not the case, as the following

example shows.

In general, suppose that S is a finite-dimensional subalgebra of the regular

algebra R and F is a left /?-module. If, in addition, 51 is contained in a finite-di-

mensional semisimple subalgebra S, consider V as a left S-module. V is a direct

sum of simple 5-modules and there are only finitely many simple S-modules

available. Consequently F is a direct sum of finite-dimensional indecomposable

■S-modules, with only finitely many isomorphism types appearing in the sum.

Now let S be the three-dimensional algebra k ■ 1 + k ■ a + k ■ ß where a2 = ß2

= aß = ßa = 0. S has finite-dimensional faithful indecomposable modules Vn

with dim V„ > « (cf. [2, p. 432]). Let V = 2„ V„ and set R = Hom^F, V). R is

von Neumann regular and S imbeds in R in the obvious fashion. If S is contained

in a semisimple subalgebra, as an S-module V could also be written as a sum of

indécomposables with bounded dimension. This contradicts a general vision of the

Azumaya-Krull-Schmidt Theorem [1]. (Unfortunately, this choice of R is not

locally finite-dimensional. It is not easy to see how to adapt the example to answer

Handelman's question.)
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