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CALCULATING INVARIANTS OF INSEPARABLE

FIELD EXTENSIONS

JAMES K. DEVENEY AND JOHN N. MORDESON

Abstract. Let L be a finitely generated nonalgebraic extensions of a field K of

characteristic p ¥= 0 and let M be a finite purely inseparable extension of L. This

paper is concerned with calculating inseparability-related numerical invariants of

M/K from those of L/K.

I. Introduction. Let L be a finitely generated field extension of a field K of

characteristic p ¥= 0. If D is a maximal separable extension of K in L, then L is

purely inseparable finite dimensional over D. If ps is the smallest of the dimensions

of L over such maximal separable extensions, then s is Weil's order of inseparabil-

ity of L/K (denoted inor(L/ÄT)) [7]. If [L : D] is minimal, then L Ç K""(D) and

D is called distinguished for L/K [3], [6]. There are two other important invariants

of L/K which were introduced in [6], the inseparability exponent of L/K,

incx(L/K) = min{r\K(Lp) is separable over K} and the inseparability of L/K,

insep(L/K) = logp[L : K(LP)] — transcendence degree of L/K. These are related,

for example inex(L/K) = min{r\K(Lp) = K(DP) for a distinguished D} =

min{r|L C KP~'(D) for a distinguished D } [5, Proposition 1, p. 288].

This paper is concerned with the following question. Given D, a finitely gener-

ated separable extension of K, and L = D(cx, c2, . . ., cm), where each c, is purely

inseparable over D, how can one calculate inor(L/K), inex(L/K) and

insep(L/Ä")? There are two main tools which will be used. First are the fields

K(L(r)) = {x G L|x^ G K(LP'*J) for some/ > 0} which were studied in [5]. L =

K(L(0)) D K(LW) D K(L™) 2 • • • and K(L^) will denote n r K(L(r)). Recall

that Ä(X(co)) is the algebraic closure of K in L [5, Theorem 5, p. 289]. Also note

that H r K(LP) = K(LX) is the separable algebraic closure of K in L [4, Theorem

7.2, p. 273]. The second main tool is the concept of a form. An intermediate field F

of L/K is a form of L/K if and only if inor(L/AT) = inor(F/K). Forms were first

studied in [2]. Every finitely generated L/K has a unique minimal form L',

L D L' D K. The results established here can be used to determine properties of

L D L' D K and to construct examples with proper forms.

We introduce some notation which will be used to state the main results.

L = D(cx, c2, . . ., cm) where D is finitely generated separable over K and each c, is

purely inseparable over D. We define L, = D(cx, c2, . . . , c¡); L0 = D; p* =

[L, : L,_,]; «,. = inex(L,./K); cf G L,_„ and rt = max{t\cf" G K(L\'1X)} if the
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maximum exists and is oo otherwise; /, = min{ n\cf''*" G K(Lf^l")} if r, < oo and

/. = min{ n\cf''*" G tf(L°°)} if r, = oo. (We note that if r, = oo, then c, is

algebraic over K and since K(Lco) is the separable algebraic closure of K in L,

e¡ + / is the least pth power of c, which is separable over K.) The main results on

the stated problem are

m

inor(L/Ä') = 2  nàn{eit r¡};
/-i

inex(L/K) = max{a, +/,,..., qm + jm},       a, = mxn{e¡, r,};

insep(L//T) = a"

where d is the number of c, such that c/'' G K(Lf_x).

II. The first result is essentially contained in [2], but is presented here for clarity.

It gives an exponent-independent characterization of a form of L/K.

Proposition 0. Let L be a finitely generated extension of K and let Lx be an

intermediate field. Then Lx is a form of L/K if and only if Lp' and K(LP) are

linearly disjoint over Lf for all r.

Proof. Let n be the exponent of L over K. If we have linear disjointness for all r,

then we certainly have it for r = ft, so L, is a form of L/K[2, Theorem 1.3, p. 656].

Assume we have disjointness for n. If r < n, then since K(L\°") D Kp" (Lp") D

Lf", Lp" and Kp" '(Lp") are linearly disjoint over Lp". Takingp"~rth roots of these

fields gives the desired linear disjointness. If r > «, by induction it suffices to prove

the case r = n + 1. Taking pth roots, we need Lp" and Kp (Lp") linearly disjoint

over Lp". But since Kp'\lp") d K(Lp") d Lp", by the standard lemma on linear

disjointness we only need show K(LP") and Kp (Lp") are linearly disjoint over

K(LP"). But this follows since K(LP") and Kp~' are linearly disjoint over K, as

K(LP") is separable over K.

Lemma 1. Let F be a finitely generated extension of K and let x G F\ Fp.

(1) Ifx G K(F"), then inor(F(xpi)/K) = inor(F/ÀT) + 1.

(2) Ifx G K(FW), then inoT(F(xp')/K) = inoi(F/K) + 1.

(3)IfxCF\ K(Fm), then inoT(F(xp')/K) = inor(F/K).

Proof. Since K(FP) C K(FW), (1) follows once we prove (2). Since x G K(FW),

xp' G K(FP* ) for some r. If the conclusion of (2) were false, then F/K would be a

form of F(xp~)/K. Thus by Proposition 0, (F(xp~)yr^ and K(FP'*') are linearly

disjoint over Fp'* , and in particular have Fp'* as their intersection. But then

xp' g fp' ancj nence x g ppt a contradiction. Thus we have (2). For (3),

Fp'(xp"') and K(FP') must be linearly disjoint over Fp' since [Fp'(xp"'): Fp'] = p

and xp"' $ K(Fp'). Thus F/K is a form of F(xp')/K.

Theorem 2. Let F be a finitely generated extension of K and let x G F \ Fp.

Assume r = max{f|x G K^^)} if it exists and r = oo otherwise. Then

inor(F(xp")) = inor(F/K) + min{<?, r}, e > 0.
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Proof. The proof is by induction on e. If e = 1, the result is Lemma 1. Consider

the chain of fields F(xp") D F(xp"*') D F. Since [F(xp~'*'): F] = pe~\

inoT(F(xp~'*')/K) = min{e - 1, r} by induction. Thus the result will be estab-

lished once we show inor(F(xp ')/K) = inor(F(xp'+ )/K) + 1 if and only if e < r.

Suppose inox(F(xp")/ K) = inor(F(xp"^)/ K) + 1. Then **""*' G

K((F(xp~'*'))w) by Lemma 1. Thus (xp"+Y G K((F(xp"*')y'+') for some s, and

in fact for s as large as we wish. Hence take s > e — 1. Then x^ G K(Fp'*J)(xpJ* )

where/ = -e + I + s. Thus jr/ is separable over K(FP'*J). Hence x^ G K(Fr'*J)

and so e < r. Conversely, suppose e < r < oo. Then x^ G K(FP' ) for some/ and

/ can be taken as large as we wish. Thus for / = -e + 1 + s where s > e — 1,

(xp"*')p' G K((F(xp~'*')y'*'). Hence at*"**' G K((F(xp"*'))w) and so

inor(F(xO/*0 = inor(F(xp"*1)/K) + 1 by Lemma 1. Suppose e < r = oo.

However, if /• = oo, then x and hence xp is algebraic over A". Thus xp ' G

Ar((F(x'~'+'))(oo>) and inor(F(xO/*) = inoT(F(Xp"*')/K) + 1 by Lemma 1.

Corollary 3. In the notation of the introduction, moi(L/K) = 27-1 rnin{e„ r,}.

Proof. This follows from m applications of Theorem 2 to the chain of fields

D = L0 c Lx c ■ ■ ■ C Lm = L and the fact that inor(£>/^:) = 0.

Lemma 4. Let F be a finitely generated extension of K and let x 6 F\ Fp. Let

r = max{i|.x G K(F^)} if it exists and r = oo otherwise. If e > r, then

inex(F(xp")/K) = inex(F(xp")/K).

Proof. By Theorem 2, inoi(F(xp~')/K) = inoi(F(x"~')/K) = inor(F/K) + r.

Thus F(xp ) is a form of F(xp ') and hence they both have the same inseparability

exponent [2, Theorem 1.3, p. 656].

Theorem 5. Let F be a finitely generated extension of K and let x G F \ Fp. Let

r = max{/|x G K(FW)} if it exists and r = oo otherwise. Let j be the least nonnega-

tive integer such that x1^ G K(FP' J). Then

inex(F(xp   )/K) = max(inex(F/A), min(e, r) + j).

Proof. In view of Lemma 4, we may assume e < r. Let D be a distinguished

subfield of F/K and let t = inex(F/K). Then F C KP"(D) [5, Proposition 1, p.

288]. By Theorem 2, inor(F(xp ')/ K) = inor(F/AT) + e, so D is also distinguished

for F(xp~')/K. Now x** G K(FP'*J). So x"'' G K""^") C K""~J(F) C

Kp-""l"'*J)(D). Thus F(xp') C Kp-a"l-"J)(D) and intx(F(xp~')/K) <

max{inex(F/AT), e+j}. Now assume F(x" ') C KP"(D). Then clearly s>

inex(F/K). Suppose s < e +/ < r + j. Then xp" G KP"(D). Thus (xp"y'*' =

x? G Kp(D"'*J) and x^ G K(FP'*J). But since je** G Z> and K(FP'+J) and Z) n

K(FP'*J) = K(Dp'*J) [1, Theorem 2.9, p. 1310], je"" G KP(DP'+J) n A(Z)"'+y) =

Kp(Dp'+1) since Z> is separable over K. Thus x^"' G K(Dpr*'~") C K(FP'+J~'). If

/ > 0, this contradicts the definition of / and if/ = 0, this contradicts the degree of

xp ' over F. Thus s < e + / is impossible.
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Corollary 6. In the notation of the introduction,

inex(L/K) = max{a, +/„ q2 + j2,

Ii =min{e,., r,}.

Theorem 7. Let F be a finitely generated extension of a field K and let x G

F\Fp,e> 0.

(l)//x $ K(Fp), insep(F(xp~')/K) = insep(F/K).

(2) Ifx G K(Fp), inscp(F(xp~')/K) = insep(F/K) + 1.

Proof. (1) x is /»-independent in F/K. Let {x} u C be a relative /»-basis of

F/K. Then {x'"} u C is a relatives-basis of F(xp")/K.

(2) Since x G ÄTF*), K((F(xp")y) and F are linearly disjoint over K(FP). Thus

if C is a relative/»-basis of F/K, C is also relatively /»-independent in F(xp ')/K.

Suppose for some c G C, c G K(Fp)(xp ', C \ {c}). Then by the exchange prop-

erty, x^ " G K(Fp)(xp '* , C). This contradicts the fact that the exponent of xp

over F is e. Thus C u {x' '} is a relative/»-basis of F(xp ')/K.

Corollary 8. In the notation of the introduction, insep(L/K) = d where d is the

number of c¡ such that cf ' G K(Lf_,).

It is clear that, in the notation of the introduction where L = D(cx, . . ., cm), D

being separable over K is merely a matter of convenience. For example, if D / K is

inseparable, then Corollary 3 would simply be inox(L/K) = inor(Z)/'K) +

STL i min{e„ r,}. Thus, if D is inseparable over K, D/K is a form of L/K if and

only if each r¡ = 0. This shows how to construct extension with proper forms.

Similarly, by a degree argument, every distinguished subfield of D/K is one of

L/K if and only if ei < r¡ for all i.
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