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FINITELY GENERATED NON-HOPFIAN GROUPS

A. H. RHEMTULLA1

Abstract. We discuss finitely generated groups that are badly non-Hopfian. Given

any countable group L, we construct a finitely generated group G = K x H where

H is isomorphic to G and L is a two-step subnormal subgroup of K.

1.

1.1. Following P. Neumann, we call a group G weakly Hopfian if G = K X H

and H =: G imply K = {1}. In [3] he investigated weak Hopficity in finitely

generated solvable groups and proved that every finitely generated nilpotent-by-

nilpotent group is weakly Hopfian but there exists a two generator solvable group

of length three that is not weakly Hopfian. These results have motivated the

investigations here. We call a group G subnormally Hopfian if G = K Xi H, H a

subnormal subgroup of G and H c=l G imply K = {1}. G is directly Hopfian if

G = K X H and H ^ G imply K = {1}. We write G = K X¡ H to mean that

G = KH,K < Gand/T n // = {1}.

1.2. It turns out that if G is a finitely generated group that is not subnormally

Hopfian then G/B is not directly Hopfian, where B is the group generated by all

abelian subnormal subgroups of G-the Baer radical of G. We shall discuss only

finitely generated groups that are not subnormally Hopfian. Theorem 1 gives some

properties of such a group G. These properties imply, in particular, that G cannot

be solvable. Theorem 2 deals with the result mentioned at the beginning of this

paragraph. Theorems 3 and 4 deal with the embedding problems. Simple construc-

tions and use of the beautiful results of P. Hall in [1] show that any countable

group L can be subnormally embedded in a finitely generated group that is not

directly Hopfian. We have not tried to pursue this line to obtain results similar to

those of J. M. Tyrer-Jones in [4].

2.

2.1. For a given group G and positive integer m, ym(G) will denote the /nth term

of the lower central series of G. Thus y,(G) = G and ym+1(G) = [ym(G), G].

Occasionally we shall write G' to denote 72(6)- We shall also use the symbol 33 for

the class of groups generated by abelian subnormal sufbgroups, 21 for abelian

groups, 9Î for nilpotent groups, © for finitely generated groups, max-« for groups

satisfying the maximal condition for normal subgroups and 219? for abelian-by-

nilpotent groups.

2.2. Statements and proofs of the theorems.
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Theorem 1. // G = A" X // G ©, H^G and H subnormal in G then the

following hold.

(i) ym(H) is normal in G for some positive integer m.

(ii) K = K'.
(iii) K n M G 93 where M = HG = <//*; g G G>.

Proof. Since // is subnormal in G the «-fold commutator group [K, //,..., //]

< A" n //= {1}. Thus [ym(//), AT] = {1} for some positive integer m [2, Theorem

3.8]. This gives (i).

Since ® n 2I9Î c max-« c class of Hopfian groups, K < y2(ym(G)). Therefore

ym(G) = K X ym(//) and y2(ym(G)) - A" X y2(ym(//)) > AT. Thus K = A". Let *

denote the natural map of G onto G/ym(H) = G*. Then A"^ A"* and H* is

nilpotent of class m and subnormal in G*. Let B* be the Baer radical of G*. Then

H* <B* < G*. Thus A/* < £* where M = <//*; g G G>. Thus A/* n K* < B*.

But M*ní*^Mníí. Hence M n AT G 93.

Theorem 2. Suppose G = AT X // G ©, // a subnormal subgroup of G and

H ^ G. Le/ * Z>e /«e natural map of G onto G/B = G* w/iere Ä is the Baer radical

of G. Then G* = K* X //*, H* ^ G* and K* ¥= {I) if K =£ {1}.

Proof. Let M = <//*; g G G>. By Theorem 1, K = AT' and K n A/ ç B. Thus

AT* is a finitely generated perfect group. Since a nontrivial group cannot be perfect

and nilpotent, K <J B unless K = {1}. That //* < G* follows from Theorem 1. Let

0 be the isomorphism of G onto H then 0(5) is the Baer radical of H and hence

9(B) = 5 n H and G/5 c^ ///S n H^ H*. This completes the proof.

Suppose that G = K X // G ©, H ^ G and AT =£ {1}. Write AT, = K, Hx = //.

Since //, =^ G, //, = A"2 X H2 where A"2 =s AT,, Z/2 =: G. More generally,

G = KXX K2X ■ ■ ■ xKmX Hm,       Hm^G,K^K,

for all / = 1, . . . , m and m = 1, 2, ... . Since G = <g,, . . ., g„> for a suitable

choice  of generators g, G G,  g¡ = kiXk¡2 ■ ■ ■ kimhim  where ktJ G Kp  him G Z/m.

Moreover this representation is unique. Thus for all / = 1, . . ., n, j = 1, 2,...,

Kj " "V(*i> •••»&)" "V(*i>> • ■ • > **) and w^/c,,, ..., kj) - 1 if / i*/. Let <fy be
the isomorphism of Kj onto A". Then K = (kxfij, . . ., knJ<bj},j =1,2,..., and so

w^k^j, ..., knJ<bj) - | ^ = , (*)

This means that K has infinitely many generating sets Sj = {kXJ<bj, . . ., knJ<j>j) and

words wu satisfying (*). These are nonisomorphic sets in the sense that no

automorphism of K can map S, onto S¡ as ordered sets. A simple way to construct

such a group is to take A" to be a finitely generated simple group containing a

wreath product IwrT where X is any nonabelian group and T = <r> is infinite

cyclic. Let a, b G X such that [a, b] = c ¥= 1. Write x, to denote t~'xt', x G A". We

can take A to be a two-generator group as shown by Wilson in [5, p. 20], and we

can take A" to be a nonabelian finite p-group so that X wr T is linear. Suppose that

A* = (x,y}. Let C be the cartesian product of copies A, of AT, i G N; let G be the
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subgroup of C generated by x = (x, x, . . . ), y = ( v, v, . . . ) and t =

(1, t, t2, . . . ). Then the diagonal subgroup A of C is contained in G and if we

denote by g the element (g, g, . . . ) of A, then [aT, b] = ([a, b], 1, 1, . . . ). Since K

is simple, A", < G. Similarly A, and hence the direct product of K¡, i G N, is a

subgroup of G. Let //, = <x', v', t'> where x' = (1, x, x, . . .), y' = (1, v, v, . . . )

and t' = t/'"1 = (1, 1, t, t2,. . .'). Then Hx < G, //, ^ G, and G=KXX Hx. Thus

we have shown

Theorem 3. There exists a three-generator group G that is not directly Hopfian.

Now let A" = {x,y} be as above and let A"* = <x*, v*> be a copy of K. If L is

any countable group, then by Theorem A of [1], there exists a group J = <AT, A"*>

such that L is a two-step subnormal subgroup of J. Let C be the cartesian product

of copies /„ / G N, of J and let A denote the diagonal subgroup of C. Then

A = <x, v, x*,y*} where g = (g,g,-.-) for all g G /. The subgroup G =

<A, t, t*> where t = (1, r, t2, . . . ) and t* = (1, r*, t*2, . . . ) is the direct product

of Jx and //, where //, = <A', t', t*'>. Here A' is generated by g' = (1, g, g, . . .),

g G J, and t' = tí'-1 = (1, I, t, t2, . . .). t*' is defined similarly. It is easy to see

that Jx < G for [aT, ¿] = ([a, b], 1, 1, . . . ) and since K is simple, <[a, éf) <

{(/t, 1, 1, . . . ); k G A"}. Similarly using a*, b* and t* we get G > {(k*, 1,1,...);

k* G A**}. Since J = (K, K*}, G > Jx. The rest follows easily from this and we

have the following final result.

Theorem 4. Let L be any countable group. Then there exists a six-generator group

G = K X H such that //^G and L is a two-step subnormal subgroup of K.
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