FINITELY GENERATED NON-HOPFIAN GROUPS

A. H. RHEMTULLA¹

ABSTRACT. We discuss finitely generated groups that are badly non-Hopfian. Given any countable group L, we construct a finitely generated group $G = K \times H$ where H is isomorphic to G and L is a two-step subnormal subgroup of K.

1.

- 1.1. Following P. Neumann, we call a group G weakly Hopfian if $G = K \rtimes H$ and $H \simeq G$ imply $K = \{1\}$. In [3] he investigated weak Hopficity in finitely generated solvable groups and proved that every finitely generated nilpotent-by-nilpotent group is weakly Hopfian but there exists a two generator solvable group of length three that is not weakly Hopfian. These results have motivated the investigations here. We call a group G subnormally Hopfian if $G = K \rtimes H$, H a subnormal subgroup of G and $H \simeq G$ imply $K = \{1\}$. G is directly Hopfian if $G = K \times H$ and $H \simeq G$ imply $K = \{1\}$. We write $G = K \rtimes H$ to mean that G = KH, $K \triangleleft G$ and $K \cap H = \{1\}$.
- 1.2. It turns out that if G is a finitely generated group that is not subnormally Hopfian then G/B is not directly Hopfian, where B is the group generated by all abelian subnormal subgroups of G—the Baer radical of G. We shall discuss only finitely generated groups that are not subnormally Hopfian. Theorem 1 gives some properties of such a group G. These properties imply, in particular, that G cannot be solvable. Theorem 2 deals with the result mentioned at the beginning of this paragraph. Theorems 3 and 4 deal with the embedding problems. Simple constructions and use of the beautiful results of P. Hall in [1] show that any countable group L can be subnormally embedded in a finitely generated group that is not directly Hopfian. We have not tried to pursue this line to obtain results similar to those of P. M. Tyrer-Jones in [4].

2.

- 2.1. For a given group G and positive integer m, $\gamma_m(G)$ will denote the mth term of the lower central series of G. Thus $\gamma_1(G) = G$ and $\gamma_{m+1}(G) = [\gamma_m(G), G]$. Occasionally we shall write G' to denote $\gamma_2(G)$. We shall also use the symbol \mathfrak{B} for the class of groups generated by abelian subnormal sufbgroups, \mathfrak{A} for abelian groups, \mathfrak{A} for nilpotent groups, \mathfrak{B} for finitely generated groups, max-n for groups satisfying the maximal condition for normal subgroups and $\mathfrak{A}\mathfrak{N}$ for abelian-by-nilpotent groups.
 - 2.2. Statements and proofs of the theorems.

Received by the editors February 8, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 20E15, 20E22; Secondary 20E34.

¹Research partially supported by a grant from NSERC.

THEOREM 1. If $G = K \rtimes H \in \mathfrak{G}$, $H \simeq G$ and H subnormal in G then the following hold.

- (i) $\gamma_m(H)$ is normal in G for some positive integer m.
- (ii) K = K'.
- (iii) $K \cap M \in \mathfrak{B}$ where $M = H^G = \langle H^g; g \in G \rangle$.

PROOF. Since H is subnormal in G the n-fold commutator group $[K, H, \ldots, H] \le K \cap H = \{1\}$. Thus $[\gamma_m(H), K] = \{1\}$ for some positive integer m [2, Theorem 3.8]. This gives (i).

Since $\mathfrak{G} \cap \mathfrak{M}\mathfrak{N} \subset \max n \subset \text{class of Hopfian groups, } K \leq \gamma_2(\gamma_m(G))$. Therefore $\gamma_m(G) = K \times \gamma_m(H)$ and $\gamma_2(\gamma_m(G)) = K' \times \gamma_2(\gamma_m(H)) > K$. Thus K = K'. Let * denote the natural map of G onto $G/\gamma_m(H) = G^*$. Then $K \simeq K^*$ and H^* is nilpotent of class m and subnormal in G^* . Let B^* be the Baer radical of G^* . Then $H^* < B^* \lhd G^*$. Thus $M^* \leq B^*$ where $M = \langle H^g; g \in G \rangle$. Thus $M^* \cap K^* \leq B^*$. But $M^* \cap K^* \simeq M \cap K$. Hence $M \cap K \in \mathfrak{B}$.

THEOREM 2. Suppose $G = K \rtimes H \in \mathfrak{G}$, H a subnormal subgroup of G and $H \simeq G$. Let * be the natural map of G onto $G/B = G^*$ where B is the Baer radical of G. Then $G^* = K^* \times H^*$, $H^* \simeq G^*$ and $K^* \neq \{1\}$ if $K \neq \{1\}$.

PROOF. Let $M = \langle H^g ; g \in G \rangle$. By Theorem 1, K = K' and $K \cap M \subseteq B$. Thus K^* is a finitely generated perfect group. Since a nontrivial group cannot be perfect and nilpotent, $K \nsubseteq B$ unless $K = \{1\}$. That $H^* \lhd G^*$ follows from Theorem 1. Let θ be the isomorphism of G onto H then $\theta(B)$ is the Baer radical of H and hence $\theta(B) = B \cap H$ and $G/B \simeq H/B \cap H \simeq H^*$. This completes the proof.

Suppose that $G = K \times H \in \mathfrak{G}$, $H \simeq G$ and $K \neq \{1\}$. Write $K_1 = K$, $H_1 = H$. Since $H_1 \simeq G$, $H_1 = K_2 \times H_2$ where $K_2 \simeq K_1$, $H_2 \simeq G$. More generally,

$$G = K_1 \times K_2 \times \cdots \times K_m \times H_m, \quad H_m \simeq G, K_i \simeq K,$$

for all $i=1,\ldots,m$ and $m=1,2,\ldots$ Since $G=\langle g_1,\ldots,g_n\rangle$ for a suitable choice of generators $g_i\in G,\ g_i=k_{i1}k_{i2}\cdot\cdot\cdot k_{im}h_{im}$ where $k_{ij}\in K_j,\ h_{im}\in H_m$. Moreover this representation is unique. Thus for all $i=1,\ldots,n,j=1,2,\ldots,k_{ij}=w_{ij}(g_1,\ldots,g_n)=w_{ij}(k_{1j},\ldots,k_{nj})$ and $w_{ij}(k_{1l},\ldots,k_{nl})=1$ if $l\neq j$. Let ϕ_j be the isomorphism of K_j onto K. Then $K=\langle k_{1j}\phi_j,\ldots,k_{nj}\phi_j\rangle,j=1,2,\ldots,$ and so

$$w_{il}(k_{1j}\phi_j,\ldots,k_{nj}\phi_j) = \begin{cases} 1, & \text{if } j \neq l, \\ k_{ij}, & \text{if } j = l. \end{cases}$$
 (*)

This means that K has infinitely many generating sets $S_j = \{k_{lj}\phi_j, \ldots, k_{nj}\phi_j\}$ and words w_{il} satisfying (*). These are nonisomorphic sets in the sense that no automorphism of K can map S_j onto S_l as ordered sets. A simple way to construct such a group is to take K to be a finitely generated simple group containing a wreath product X wr T where X is any nonabelian group and $T = \langle t \rangle$ is infinite cyclic. Let $a, b \in X$ such that $[a, b] = c \neq 1$. Write x_i to denote $t^{-i}xt^i$, $x \in X$. We can take K to be a two-generator group as shown by Wilson in [5, p. 20], and we can take X to be a nonabelian finite p-group so that X wr T is linear. Suppose that $K = \langle x, y \rangle$. Let C be the cartesian product of copies K_i of K, $i \in \mathbb{N}$; let G be the

subgroup of C generated by $\underline{x}=(x,x,\ldots),\ \underline{y}=(y,y,\ldots)$ and $\tau=(1,t,t^2,\ldots)$. Then the diagonal subgroup Δ of C is contained in G and if we denote by \underline{g} the element (g,g,\ldots) of Δ , then $[\underline{a}^{\tau},\underline{b}]=([a,b],1,1,\ldots)$. Since K is simple, $\overline{K}_1 \leq G$. Similarly K_i and hence the direct product of K_i , $i \in \mathbb{N}$, is a subgroup of G. Let $H_1=\langle \underline{x}',\underline{y}',\tau'\rangle$ where $\underline{x}'=(1,x,x,\ldots),\ \underline{y}'=(1,y,y,\ldots)$ and $\tau'=\tau\underline{t}'^{-1}=(1,1,t,t^2,\ldots)$. Then $H_1 \leq G$, $H_1 \simeq G$, and $G=K_1 \times H_1$. Thus we have shown

THEOREM 3. There exists a three-generator group G that is not directly Hopfian.

Now let $K = \langle x, y \rangle$ be as above and let $K^* = \langle x^*, y^* \rangle$ be a copy of K. If L is any countable group, then by Theorem A of [1], there exists a group $J = \langle K, K^* \rangle$ such that L is a two-step subnormal subgroup of J. Let C be the cartesian product of copies J_i , $i \in \mathbb{N}$, of J and let Δ denote the diagonal subgroup of C. Then $\Delta = \langle \underline{x}, \underline{y}, \underline{x}^*, \underline{y}^* \rangle$ where $\underline{g} = (g, g, \dots)$ for all $\underline{g} \in J$. The subgroup $G = \langle \Delta, \tau, \tau^* \rangle$ where $\underline{\tau} = (1, t, t^2, \dots)$ and $\underline{\tau}^* = (1, t^*, t^{*2}, \dots)$ is the direct product of J_1 and H_1 where $H_1 = \langle \Delta', \tau', \tau^{*'} \rangle$. Here Δ' is generated by $\underline{g}' = (1, g, g, \dots)$, $\underline{g} \in J$, and $\underline{\tau}' = \underline{\tau}'^{-1} = (1, 1, t, t^2, \dots)$. $\underline{\tau}^{*'}$ is defined similarly. It is easy to see that $J_1 \leq G$ for $[\underline{a}^{\tau}, \underline{b}] = ([\underline{a}, \underline{b}], 1, 1, \dots)$ and since K is simple, $\langle [\underline{a}, \underline{b}]^{\Delta} \rangle \leq \{(k, 1, 1, \dots); k \in K\}$. Similarly using \underline{a}^* , \underline{b}^* and $\underline{\tau}^*$ we get $G \geq \{(k^*, 1, 1, \dots); k^* \in K^*\}$. Since $J = \langle K, K^* \rangle$, $G \geqslant J_1$. The rest follows easily from this and we have the following final result.

THEOREM 4. Let L be any countable group. Then there exists a six-generator group $G = K \times H$ such that $H \simeq G$ and L is a two-step subnormal subgroup of K.

REFERENCES

- 1. P. Hall, On the embedding of a given group in a join of given groups, J. Austral. Math. Soc. 17 (1974), 434-495.
 - 2. _____, Nilpotent groups, Canad. Math. Congress Summer Seminar, Univ. of Alberta, 1957.
 - 3. P. Neumann, Endomorphisms of infinite soluble groups, Bull. London Math. Soc. 12 (1980), 13-16.
 - 4. J. M. Tyrer-Jones, Direct product and the Hopf property, J. Austral. Math. Soc. 17 (1974), 174-196.
- 5. J. S. Wilson, On characteristically simple groups, Math. Proc. Cambridge Philos. Soc. 80 (1976), 19-35.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA