
proceedings of the
american mathematical society
Volume 81, Number 3, March 1981

A NOTE ON SINGULAR INTEGRALS WITH WEIGHTS

DOUGLAS S. KURTZ AND RICHARD L. WHEEDEN1

Abstract. We prove two results concerning the behavior on weighted Lp spaces of

Calderón-Zygmund singular integrals formed with kernels whose Ll moduli of

continuity satisfy the Dini condition. We also prove a result about the behavior of

multiplier operators.

Let K(x), x G R", be homogeneous of degree -n, have integral over |jc| = 1

equal to zero.and satisfy the L'-Dini condition

fl^p- do < +00,    where w(<5) = sup f       \K(px') - K(x')\ dx',       (1)
•'o     ° -Vl-i

the sup being taken over all rotations p of the unit sphere with magnitude at most

S. Let Tf(x) = p.v. (/ * K)(x) denote the corresponding Calderón-Zygmund singu-

lar integral. Under the mild restriction (1), very little is known about the classes of

nonnegative weight functions w(x) for which either

(jV/(*)|M*) <&)  ' < c(fjAx)Mx) dx}  ", \<p < oo,       (2)

or

[ w(x) ¿x < £ f l/WW*) dx,       X> 0,p = 1, (3)
J{x: \Tf(x)\>\) A JR"

where c is a constant independent of / and X. Most such known results rely on

stronger assumptions about K; see, e.g., [5]. If K only satisfies (1), both (2) and (3)

are of course valid if w(x) = 1 (see [1]); in this case the full strength of (1) is used

only to obtain (3), (2) being true under the weaker assumption that K is of class

L log+ L(\x\ = 1) ([1], [2]). If w(x) = |x|a, a result in [7] states that if K is just in

L log+ L(\x\ = 1), then (2) holds if -1 < a <p — 1, but does not hold if a >

p — 1 or a < -1. This range of a is considerably more restricted than the range

-n < a < n(p — 1) for which w(x) = \x\a satisfies the Ap condition

¡QAx)dx)[w\^xyl"""'"T'

where Q is any cube in R .

The main purpose of the note is to prove two facts about T when K satisfies (1).

These are related to the result in [7] quoted above. We will show that if p = 1, an
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analogous weak-type result (3) holds if K satisfies the stronger assumption (1), and

that (2) (or (3) when p = 1) fails for a > p — 1 or a < -1 even if K satisfies (1).

Specifically, we will prove

Theorem 1. Let K(x) be homogeneous of degree -n, have mean-value zero on the

unit sphere, and satisfy (1). If -I < a < 0, then (3) holds with w(x) = \x\".

Theorem 2. There is a kernel K which satisfies the assumptions listed in Theorem 1

and for which (2) and (3) fail when w(x) = \x\" with a >p — 1 or a < -1.

We also prove a result of a different nature which is related to a theorem in [5].

There we consider multiplier operators T defined by Tf(x) = m(x)f(x), where m is

a bounded function which satisfies

sup\RsW-n[ \Dam(x)\* dx)      < +oo (4)
Ä>0\ JR<\x\<2R I

for all multi-indices a = (a,, . . . , a„) of nonnegative integers with length |«| = a,

+ • • ■ + a„ < /, where / is a preassigned positive integer and s > 1. The collection

of such m is denoted M(s, I), and the result in [5] in question states that if

m G M(s, I), 1 < s < 2, [n/s] <l < n and n/l < p < (n/l)', then (2) is valid for

w(x) = |x|a if -n < a < n(p — 1). Since this is precisely the range of powers of |jc|

which satisfy the Ap condition, it seemed plausible that (2) might hold for any w in

A . This, however, is not the case.

Theorem 3. Let 1 < s < 2, [n/s] < I <n and n/l < p < (n/l)'. Then there exist

w in A. and m in M(s, I) such that the multiplier operator defined by Tf = mf does

not satisfy (2).

The example we will give for Theorem 3 arose in discussions with R. Hunt, B.

Muckenhoupt and W.-S. Young.

In what follows, we write / E. L£ if the right side of (2) is finite, and use c to

denote constants which may be different in different occurrences.

Proof of Theorem 1.

Lemma 1. Let S2(x) be homogeneous of degree zero and integrable on \x\ = 1. If

a > -1 and \t\ < 2| v|, then

f |0(x)| \x + t + y\" dx < cIlQH^i-ul v|"+«.
J\x\<10\y\

This is a special case of Lemma 1 in [7].

In the next lemma, we use the known fact that (1) implies (in fact, by [3], is

equivalent to)

( \K(x - y)- K(x)\ dx <c,       y G R". (5)
J\x\>2\y\

Lemma 2. Let K satisfy (1) and -1 < a < 0. There is a constant c so that if Q is a

cube with center y q, then for y e Q

f \K(x - y) - K(x - yQ)\ \xf dx < cr¿ f \x\a dx.
J\x-ye\>2diamQ \l¿\ •>Q
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Proof. Let d = diam QAid > 2\yQ\, then

J-[ \x\-dx >-!L f \x\<"dx>cd".
\V.\JQ "    J\x\<d/A

Since |jc - vß| > 2d implies \x\ > \x - yQ\ - |ve| > 2d - d/2 > d, using the

fact that a < 0 together with (5), we get

( \K(x - » - K(x - yQ)\ \x\« dx
J\x-yQ\>2d

<da[ \K(x - y) - K(x - yQ)\ dx < cda.
J\x-yQ\>2\y-yQ\

lid < 2\yQ\, then

±-(\x\"dx>-^( \x\-tbOc\ytf.

Also, if v G Q,

[ \K(x -y)- K(x - yQ)\ \x\« dx < \yQ\*

■ f \K(x -y)- K(x - yQ)\ dx < c\yQ\a,
J\x-yQ\>A\yQ\

by the reasoning above, since 4| vß| > 2d > 2\y — yQ\,y G Q. Thus, we have only

to show that

[ \K(x -y)- K(x - yQ)\ \x\a dx < c\yQ\a,       y G Q,
J2d<\x-y0\<A\yQ\

or, by a change of variables, that

$ = ( \K(x - Ô) - K(x)\ \x + yQ\° dx < c\yQ\a
J2d<\x\<4\yg\

where |5| < d < 2|yQ\.

Consider first the case d/2 < \yQ\ < Ad. Note that {x: 2d < \x + S\ < 4|yQ\)

C {x: | ve|/4 < |jc| < 6|yQ\). Thus, by a change of variables, we have

<D< f \K(x - Ô)\ \x + yQ\" dx+ f \K(x)\ \x + yQ\« dx
J2d<\x\<A\yQ\ J\yQ\/2<\x\<A\yQ\

< ( \K(x)\ \x + d+ yQ\a dx + ( \K(x)\ \x + yQ\" dx
J\ye\/4<\x\<6\ye\ J\ye\/2<\x\<A\yQ\

By the homogeneity of K, K(x) = ß(x')/|x|n where x' = x/\x\. Therefore,

*<f l^Çt\x + 8 + yQ\° dx
•/bol/4<W<6|>-e|     1*1

+ ( ^l* + yQ\a dx
J\yQ\/2<\x\<A\yQ\     \X\

< c\yQ\»,

by factoring out \x\~" < c\ve|~" and applying Lemma 1.
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If Ad < \yQ\, we write

$ = f \K(x -8)- K(x)\ \x + yQ\" dx
J2d<\x\<\yg\/2

+ f \K(x -8)- K(x)\ \x + yQ\" dx.
J\yo\/2<M<A\y0\

Using the fact that \x + yQ\ is equivalent to |yQ\ for \x\ < \yQ\/2 and applying (5),

we see the first term on the right is bounded by c\yQ\". We get the same estimate

for the second term by repeating the previous argument and using the fact that

I« I < bßl/4.
To prove Theorem 1, let/* denote the Hardy-Littlewood maximal function of/,

/ > 0. The procedure in [8, p. 19], allows us to decompose {x: f*(x) > X) into a

sequence of nonoverlapping cubes {Qk} such that/(x) < X for a.e. x outside U Qk

and ÍQkf(x) dx/\Qk\ < cX. The proof of Theorem 1 is now fairly standard and we

shall be brief. Using the Qk above, write / = g + b where g = f outside U Qk and

g = jQJ(x) dx/\Qk\ on Qk. Applying Theorem 1 of [7] and the fact that 0 < g <

X, we have

f \x\a dx<±f g(x)2\x\° dx<{( g(x)\x\° dx.
J{x: \Tg(x)\>\) X    JR" A •'R"

Since -1 < a < 0, |x|a satisfies the Ax condition /e|x|a dx/\Q\ < c essßinf|jc|a.

Hence, by the definition of g,

f g(x)\x\" dx = f        f(x)\x\" dx + ^Z—f f(t) dt [ \x\° dx
^R" J{uQky k   \Qk\ JQk JQk

<c[ f(x)\x\a dx.

Let (?* be Qk expanded concentrically twice. Then

f     \x\a dx <c[     \x\a dx < y f f(x)\x\a dx,
Juot JuQk XJw'uQk

the last inequality being a corollary of the weak-type result in [6] for the Hardy-Lit-

tlewood maximal function.

Finally, letyk be the center of Qk. Since f^iy) dy = 0,

f       \(k * b)(x)\ w dx = f        2 / *(* - y)Ky) dy
•'»"-uef -V-U&*       JQk

\x\a dx

= [ I 2 [  {K(x - v) - K(x - yk))b(y) dy
'R"-UQÍ

\x\a dx.
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Changing the order of integration, applying Lemma 2 and the definition of Ax, we

have

f \(K . b)(x)\ \x\a dx
JR" -uQt

< 2 f \b(y)\[ f     l*(* -y)~ K(x - y*)\ \*\a A &
jQk Vvr-Qt I

<cS f i*(r)ib'r*<«£/ow*-

Theorem 1 now follows as usual.

Proof of Theorem 2. Consider the case n = 2. Define £2(0) of period 2w by

1/1*1 llog^H, |#| < 1/2.

Q(*) - j-1/1* - *| M* - *H.     IÖ-ttKI/2, (6)
0, elsewhere in |ö I < w.

Clearly, 0 has mean-value zero. To see it satisfies (1), let \p\ < 5, 8 <\. By

symmetry and the fact that £2(0) = £2(0 + p) = 0 if {■ + 8 < |0| < it - \ - 8,

f\Q,(0 + p) - £2(0)| dO = 2 f |£2(0 + p) - £2(0)| ¿0
'-* -V|< 1/2 + 8

< 4 f       |£2(0)| d6 + 2Í |£2(0 + p) - £2(0)| ¿0
-V|<3« -/26<|r?|< 1/2-HS'm

= Dx + /)2

We have

38 ¿0
Z>, = 8 (

Jo    0|log30|      log23ô

D2<2Í |£2(0 + p) - £2(0)| dO + A f |£2(0)| ¿0.
-/28<|#|< 1/2-6 •/l/2-28<|#|<l/2 + 28

Since 5 is small, £2(0) is bounded for \ — 28 < |0| < j + 28. Thus the second term

in the estimate for D2 is bounded by c8. In the first term, |0 + p\ is equivalent to |0|

since |0| > 25 and \p\ < 8. Hence, by the mean-value theorem, the first term is at

most c8f2S<m<x/2_s i/0/02|log3|0|| < cSf¥2 d9/02\\og3 0|. This, however, is

bounded by c(log 5)~3, as we now show. In fact, changing variables, we see the

estimate in question reduces to f'x(ex/x3) dx < ce'/P, t > 1. However,

rt ex

K 73
dx < e"l

t/2dx

t/2? Jt/2
dx < c

{t/2)

,'/2
,'/2 e

<c—.

Collecting estimates, we see that the L'-modulus of continuity <o(5) of £2 satisfies

<48) < c[8 + (log 3Ô)"2 + |log ô|-3] for small 5, so that (1) holds.
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Now, let K(x) = £2(x')/l*|2 be defined by (6) and let fix) = x (|*| < 1), so that

/ G Z£|.(R2) if a > -2 and 1 < p < oo. Let S be the strip S = {x = (xx, x¿ G R2:

xx > 10, |x2| < \}. If x G S and \y\ < 1, then £2(x - y) > 0. Therefore, for x G S,

Vl<i |* - v|2 |x|2-V|<i |x|2^->-|<i

Hence, there is a constant c, so that

-W + Ci    ,   r dO
p dp I-,       x G 5

|*|2->N-c, ^Kc./w^lllog^H3

A simple computation gives Tf(x) > c/\x\ \o£\x\, x G S. This implies

dx

Tf(x) = f        , X      a   4>>r*[      Q{x - y) dy --Í-f Q(y)dy.
J\y\<l  \x — y\ \x\   J\?i*

: is a constant c, so that

nputation gi\

f \Tf(x)\p\x\a dx >cf

> c r"p«-"+,(k>g Pw r/p d») ¿P = c fV-'Oog p)-2" </p.
•'10 \-'0 ' •'10

The last integral is +oo if a >p — 1. This proves the part of Theorem 2 for

a >p — l,p > 1. The part for a < -\,p > 1, follows by duality.

If p = 1, the estimates above show that {x: \Tf(x)\ > X) contains the part of S

with |x| < cßX~l/ß for any ß > 1. It follows easily that the integral with respect to

|x|a dx over this set cannot be 0(X~l) for small X unless a < ß — 1. This proves the

part of Theorem 2 for p = 1, a > 0. For p = 1 and a < -1, let /y be the

characteristic function of the part of S with |x| < N, N large. Computations like

those above show that JR2|/v(x)| |x|" dx is bounded in AT if a < -I, and that

TfN(x) > c log log A7 for x in a small neighborhood of 0 independent of N. If we

choose X = c log log N, it follows that (3) cannot hold for w(x) = |x|a, a < -1.

The same technique can be used in R", n > 2, even for other kinds of Dini

conditions. We say £2 satisfies the Lr-Dini condition, 1 <r< oo, if (1) holds

with a defined in terms of the Z/(|x| = 1) norm. Fix £ in R" with |£| = 1, and for

|x| = I, define £2r(x) = |x - ^"-W'llogl* - £||-3 if |x - fl <|, £2r(x) =

-|x + Él-fr-W'llogl* + £||-3 if |x + i| <f, and £2r(x) = 0 otherwise. As before, £2r

satisfies the Lr-Dini condition, but (2) fails for fix) = x (\x\ < 1) if w(x) = |x|a,

a >p — 1 + (n — \)p/r'. If p > 1, duality shows (2) also fails if a < -1 —

(n - \)p/r'. As in [7], if £2(x') is +1 for x„ > 0 and -1 for xn < 0, £2 satisfies the

Lr-Dini condition, 1 < r < oo, but (2) fails when a > n(p — 1) or, by duality,

a < -n. These results thus agree with the negative conclusions of Theorem 1 of [7].

If p = 1, analogous facts again hold for (3).

Proof of Theorem 3. Fix s, I andp with 1 < s < 2, [n/s] < I < n, I an integer,

and n/l < p < (n/l)'. Since I <n andp > 1, there exists ß > 0 with ¡p — n < ß

< n(p — 1). Choose y < 0 so that -n < y < ß — lp. (If p = 2, we may take

I < ß = -y < n.) Let |tj| = 1 and define m(x) = eix\\ + |x|2)_//2, w(x) -

|x|^|x — rj|r. Then m G M(s, I), as was shown in [5], and w G Ap, which follows

either by direct computation or by appealing to the result of [4]. As in [5], if dp > 1,

the function

fix) = |*|-<" + '>/'|log|*|r»x({*: W </i»
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is in II, and if |x - tj| < n/2, Tfix) > c\x - 7í|'-<"+^>/"|log|x - rj||^ (u > 0

depends on /). Thus, Tf $ L£ since {/ - (n + ß)/p)p + 8 = lp-n-ß + y<

-n.
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