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BEYOND THE MINIMAX PRINCIPLE

CHANDLER DAVIS

Abstract. Let A be selfadjoint and P an orthoprojector. Then for any real X, the

compression of A to the subspace P% has spectral projector belonging to J\, oo[

no larger in dimensionality than does A. This generalizes the classical Poincaré

inequality. Several other like generalizations are given of various versions of the

"minimax principle".

For A a bounded selfadjoint operator on Hubert space %, and for P a proper

orthoprojector, with A written

A = (An     AX2\

\A2X     A22J

according to the decomposition % = P% © (P%)J-, there is a familiar family of

results relating the spectrum of A to that of its (selfadjoint) compression Axx —

PA\P% [1, II, §1], [3, II, §§1, 2], [2]. Deservedly best known is what is sometimes

called the Poincaré inequality. This will be stated for the case where A is positive

compact, with positive eigenvalues (multiphcity counted) X, > X2 > ■ ■ ■ ; then Axx

is automatically also positive compact, with eigenvalues yx > y^ > ■ • • . The

Poincaré inequality asserts that Xk > yk. This conclusion can be reformulated: the

spectral projector of Axx belonging to ]X, oo[ (any X) has at most the dimensionality

of the spectral projector of A belonging to the same interval. In this form it looks as

though it ought to be true without the hypothesis of compactness, and the first

business of this paper is that indeed it is (see Theorems 1 and 3).

Consider again the case where A is positive compact. Another well-known

inequality says that, if (P%)± is /i-dimensional, then X„+k < yk. This result is also

reformulated below and proved for arbitrary selfadjoint A in Theorems 2 and 4.

The two inequalities for ju^ yield variational characterizations of the eigenvalues,

leading the name "minimax principle" to be applied loosely to the whole circle of

ideas.

In the compact case, results on perturbation follow from the Poincaré inequality.

The Weyl perturbation theorem says that if H is selfadjoint compact then the

positive eigenvalues of A + H differ from those of A by no more than \\H\\, while

the Weyl monotonicity theorem says that if in addition H > 0 then the eigenvalues

of A + H are no lower than those of A. The corresponding general versions here

are inferred in the familiar way, see §2.

It is time to admit that, in this removing of finiteness restrictions from the
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minimax principle, we grievously undermine it. The conclusions of the classical

theorems are quite strong because of the circumstance that a positive compact

operator is characterized up to unitary equivalence by assigning the dimensionali-

ties of its spectral projectors belonging to ]X, oo[ (all X > 0) and {0}, so that the

classical theorems say a good deal about the unitary-equivalence type of the

operators involved. This is lost in the general situation. (For example, let A be any

orthoprojector on % with dim(P%) = dim(F3C)x = dim %, and let B be any

selfadjoint operator on % with spectrum ç [0, 1]. Then A cannot be distinguished

from A © B just by dimensionalities of spectral projectors belonging to intervals

]-oo, X[, ]-oo, X], [X, oo[, ]X, oo[.) The gap is partially bridged by the Theorem of

§3, especially part (ii), where the generality is less total and the conclusion has

more import.

The reader is encouraged to think of % as a separable Hubert space. However,

results and proofs are left intact if higher dimensionalities are countenanced, and

even for the dimension function of a semifinite von Neumann algebra if all

isometries entering are also required to he in the algebra.

1. Bounding spectral projectors.

Notation. For any selfadjoint A and real X, let {A > X) denote the range of the

spectral projector for A belonging to ]X, oo[, and let dim{A > X) denote its

dimensionality (analogously for {A > X), etc.). Also, as usual, A + and A " denote

the positive operators such that A = A + — A~ and A+A~ = 0. Similar looking

but unrelated is the symbol <3l~ : the closure of the range of any operator B is

written <&- (B).

Lemma. For any bounded Q and C,

dim(3T(ßC)) < dim(<3îr(C)),       dim(9l(Cß)) > dim(9l(C)).
For any bounded B,

ft-(JB) = <3l-(BB*),       9l(5*Ä) = 91(5).

This is elementary.

Theorem 1. For any selfadjoint A and any orthoprojector P, we have

(i) dim{PA\P% > X} < dim{^ > X),

(ii) dim{PA\P% < X} < dim{A < X).

Proof of (i). Assume without loss of generality that X = 0. We are to prove that

the subspace {PA\P%> 0} = <Si~((PAP)+) has dimensionality no greater than

that of {A > 0} = <3i~(A+). Let Q denote the orthoprojector onto 61"((PAP)+).

Then

(F^1F)+ = QPAPQ = QAQ < QA+Q, (1)

and, both operators being positive, $l~(QA+Q) D <Sl~((PAP)+). But, using the

Lemma,

dim(<3îr(Oy4+Ô)) = dim(<&-(QA+l/2))

< dim(<3l-(A + */2)) = dim(^-(A+)),

which completes the proof.
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Theorem 2. For any selfadjoint A and any orthoprojector P, we have

(i) dim{PA\P% > X} + dim(P%)-L > dim{^ > X},

(ii) dimfF^I^ < X} + dim(F3C)x > dim{,4 < X}.

Proof of (ii). Assume without loss of generality that X = 0. We are to prove that

the subspace {PA\P% < 0} © (FSC)-1- = 9l((F/iF)+) has dimensionality no less

than that of {A < 0} = ?H(A +). Let Q be as above; this time, (1) avails to show

that <%(QA +Q) Q 9l((FylP)+). Using the Lemma,

dim(9l(e^+ß)) = dim(9l(,4 + 1/2e)) > dim(?H(A + l/2)) = dim(9l(^+)),

which completes the proof.

The remaining two theorems, which add nothing in the finite-dimensional case,

in the general case are distinct and even entail a new difficulty.

Theorem 3. For any selfadjoint A and any orthoprojector P, we have

(i) dim{PA\P% > X} < dim{^ > X),

(ii) dim{PA\p% < A} < dim{^ < X).

Proof of (i). Assume without loss of generality that X = 0. We are to prove that

the subspace

{PA\P% > 0} =  H <&-((P(A - A)F) + )
A<0

has dimensionality no greater than that of

{A >0}=  n<3l-((A-X) + ).
\<o

Let Qx denote the orthoprojector onto <&T ((P(A - X)P)+). The relation (1)

extended to variable X yields

PI *r(Q(.A - X)+ Q) D  R <3L-{{P{A - A)F) + ).
\<0 \<0

At the very last step, where the elementary lemma served in Theorem 1, we now

need the fact that

dim( H &-(Qx(A - A)+1/2)) < dim( fl ®r({A - X) + x/2)\
\A<0 ' V\<0 I

This is, however, no serious obstacle: any collection {u¡}ieí of vectors in the space

on the left, such that the numbers dist(w„ span(t^:y !*£)) are bounded away from

0, readily yields, for arbitrary X < 0, a collection {t),},ei in 61 ((A — A)+1/2) with

the like property. This completes the proof.

Theorem 4. For any selfadjoint A and any orthoprojector P, we have

(i)dim{PA\P%> X) + dim(FgC)-1- > dim{^4 > A},

(ii) dim{PA\plJC < A} + dim(P%)1- > dim{A < A}.

Proof analogous.
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2. Perturbation of spectrum.

Theorem 5. For A selfadjoint and H > 0,

(i) dim{A + H > A} > dim{A > A},

(ii) dim{^ + H > X) > dim{A > A}.

Proof. For (i), let F be the orthoprojector onto the subspace {A > A}. Then

clearly

PX = {A > X) = {PA\P% >X} = {P(A + /f)!,*; > A}

(using H > 0). Application of Theorem l(i) to A + H completes the proof. Part (ii)

follows from Theorem 3(i) in the same way.

Theorem 6. For A and H selfadjoint,

(i)dim{yl + H >X+\\H\\) < dim{A > A},

(ii) dim{A + 77 < X - \\H\\} < dim{A < A},

(iii)dim{/i + 77 > A + \\H\\) < dim{^l > A},
(iv) dim{^i + 77 < X - ||771|} < dim{^ < A}.

Consider (i), for example. Appeal twice to Theorem 5(i):

dim{^ + 77 > A +||77||) < dim{A + H+ > X +\\H\\)

= dim{A + H+ -\\H\\>X) < dim{/i > A}.

Inequalities in the other direction can be obtained by applying Theorems 2 and 4

in the same way Theorems 1 and 3 were applied here. Details are left to the reader.

Here is a slightly less immediate variant of Theorem 6.

Theorem 7. For A and 77 selfadjoint and A > 0,

(i)   dim{p -A<y4<p + A}< dim{ y - A - \\H\\ <A + H<y + X +

\\H\\h
(ii)   dim{ y-X<A<y + X}< dim{ y - X - \\H\\ <A + H<y + X +

ll#l|}.
Lemma. (A + 77)+ + (A + 77)" < A+ + H+ + A~ + H~.

This is elementary.

Proof of Theorem 7. Without loss of generality, let y = 0. Consider, for

example, inequality (i). On the left, note that we have {A+ + A " < A} =

{— A <A < A}; and similarly on the right. Thus it is required to prove that

dim{/l + + A - < X} < dim{(A + H)+ + (A + H)~ < A + ||77||}.

Now dim{A+ + A~ < X} < dim{^+ + A~ + H+ + H~ <X+ \\H\\] by
virtue of Theorem 6(ii). An application of the Lemma completes the proof.

3. Better description of compressions.

Theorem 8. Let A be selfadjoint, let P be an orthoprojector and let E be the

orthoprojector onto [A > 0}. Then (i) PA\P% < WA+W* where W is some partial

isometry into P % ; and (ii) in order that it be possible in (i) to choose W an isometry

ofE% onto P%,it is sufficient that (P%) n (EX^ and (PX)-1- n (E%) both be

zero.
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This kind of bound on the compression PA\pr¡c is stronger than those of §1; in

particular, (i) here implies the bound there on dim{PA\PjC > 0). In the familiar

situation-say, A positive compact and P of finite rank-we can apply the results of

§ 1 and deduce the conclusion of Theorem 8(ii) without any special assumption on

the relative position of F DC and E%. Once we leave this situation, as by allowing

A to have an interval of continuous spectrum, Theorem 8 is asserting much more.

The hypothesis in (ii) that (P%) n (FDC)X and (FDC)X n (E%) both be zero is

at any rate a natural one. One important context in which these questions are

raised is the approximation of spectral subspaces (such as our E%) by more

accessible subspaces. If P% were a computed subspace intended to be approxi-

mately the same as F DC, it might well be verifiable that \\P — E\\ < 1, hence that

(P%) n (FDC)X = (FDC)X n (E%) = 0 (and incidentally dim P% = dim E%).

The next weaker hypothesis to try in (ii) would seemingly be dim((FDC) n (E%)±)

= dim((FDC)x n (E%)), but that would be too weak for the following proof.

Proof of Theorem 8. Clearly PAP = PA+P - PA"F < PA +P. Consider the

polar resolution PA +I/2 = WH with 77 > 0 and W a partial isometry. By defini-

tion, W takes 61" L4 +,/2F) ç F DC into <&T(PA +1/2) ç F DC, so we may write the

inequality as PA\P3C < WH2W*, with <&(W) G P%.

For (i), it remains to prove that 772 < A +. But H2 = A + l/2PA +1/2 and F < 1.

As to (ii), for it to be possible that W be extended to an isometry on F DC onto

F DC, it is necessary and sufficient that

dim((FDC) n 9l(F^l + 1/2)) = dim((FDC) n 9l(^ + 1/2F)).

The definition chosen for E guarantees that A+l/2 is one-to-one, and the special

hypothesis (FDC) n (FDC)X = (FDC)X n (FDC) = 0 guarantees that PE and EP

are one-to-one on their respective spaces; this makes the null-spaces of PA + l/2 and

its adjoint both zero. The proof is complete.

A final remark is made here delimiting the scope of applicability of this theorem.

If only A and F are given, we might seek A such that, for some orthoprojector E

with {A > A) G E% G {A > A), we could use such an argument. In the finite-di-

mensional case, all we need of A is that dim{A > A} < dim(FDC) < dim{/4 > A};

this is always realizable, and the information sought is obtained. In the general

case, snags abound. Here is an example to exhibit one of the difficulties. Let A be

diag(-l, -\, -j, . . . ), so that [A > 0} is zero, but for any A < 0, {A > A} is

infinite-dimensional; and let P be of finite rank. Then for no A does A — X behave

as in the above proof.
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