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ON NEAR-DERIVATIONS

GYULA MAKSA

Abstract. In this note we show how near-derivations can be expressed by

biadditive and additive functions satisfying further conditions.

1. The concept of near-derivation has been introduced and discussed by

Lawrence, Mess and Zorzitto [3] in connection with nonnegative information

functions. A real-valued function y defined on the reals R is called a near-deriva-

tion if

y(xy) = xy(y) + yy(x)   for all x, y G R, (1)

y(x + y) > y(x) + y(y)    for all x > 0, y > 0, (2)

y(r) = 0   for all rational r. (3)

Daróczy and Maksa showed in [1] that there exists a near-derivation which is not a

derivation. Namely, if d: R —> R is a nonidentically zero derivation then the

function y defined by

y(x) = Í d(d(x)) - d(xf/x    ûx^O, (4)
I 0 if x = 0

is such a near-derivation. In this note we present a method for recovering

near-derivations in terms of biadditive functions on R2 and additive functions on R

satisfying further conditions.

2. It has been proved in [3] that for any near-derivation y the finite limit

a(x) =  lim y(x + n) (5)
n—»-oo

exists for all x G R. Furthermore, the function a: R-»R defined by (5) has the

following properties:

(a) y(x) < a(x) for all x > 0,

(b) a(x + y) = a(x) + a(y) for all x, y ER,

(c) 2xa(x) < a(x2) for all x G R,

(d) a(r) = 0 for all rational r.

Using (a) and (l)-(3) we have

ta(\)+\a(t) = \t\a(±)+±a(\t\)

>\'\y(j^) + jfly(\t\) = y(i) = o
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that is,

(e) ta(l/t) + (l/t)a(t) > 0 for all t G R \ {0}.

Suppose that the function a: R -» R satisfies (b)-(e) and define A : R2 -» R by

A(x,y) = a(xy) - xa(y) - ya(x). (6)

It is easy to see that A has the properties:

A(x,y) = A(y,x), (7)

A(x + y,z) = A(x,z) + A(y,z), (8)

A(x,x) > 0, (9)

A(xy,z) + zA(x,y) = A(x,yz) + xA(y,z), (10)

A(t,l/t)<0, (11)

for all x, y, z G R and t G R \ {0}. It follows from [2] that a function A : R2 -^ R

satisfying (7)-(ll) is always of the form (6) where a: R—»R has the properties

(b)-(e).

Theorem 1. Suppose that the function a: R—»R satisfies (b)-(e) and define A:

R2 —» R by (6). Then the function y given by

y(x)~

a(x) - 2 2"-,x1"1/2" A(xx'2\xx'2")     ifx > 0,
n=I (12)

0 ifx - 0,

-y(-x) J/x<0

¿y a near-derivation.

Proof. Let y„(x) = 2"x'" I/2a(x1/2") for x > 0 and n = 0,1,_Then

Y„(*) - ?„-,(*) = ^"-W-^-^x^x1/2"). (13)

Hence, by (9), we get that the sequence (y„(x)) is decreasing for all fixed x > 0.

According to (c) and (11)

y„(*) + x2yn_x(l/x) > -2"xA(xl/2",x-1/2") > 0

and therefore

yn(x) > -^„-iOA) > -^oOA),

which means that the sequence (y„(x)) is bounded below for all fixed x > 0. Thus

(y„(x)) is convergent and its limit is in R. On the other hand (13) and (12) imply

that

y(x) = hm yn(x) (14)
n—»oo

holds for all x > 0. By the Cauchy-Schwarz inequality for bilinear forms on a

rational vector space

\A(u,v)\ <VA(u,u) X/A(v,v) (15)

for all u, v G R. Let x > 0, y > 0 and u = xx/2\ v = v1/2" (n = 0,1, . . . ). Using

(6), the definition of (y„(x)) and (13), (15) implies that

\yn(xy) - xyn(y) - yyn(x)\ < 2V^yy„-i(-*) - yn(x) y]y„_x(y) - yn(y).
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Hence, by (14), we obtain (1) for all x > 0,y > 0. From (12) and (9) y(t) < a(t) for

t > 0. Thus

for all x > 0, y > 0. By (1) this implies (2) for x > 0, v > 0. To prove (3) let r be a

positive rational number. Then A(r,r) = 0 therefore by (15) A(r,u) = 0 for all

u G R. Substituting x = v = Vr , z = 1/Vr in (10) we see that

A(Vr ,Vr) = rA(Vr , 1/Vr ). Thus (9) and (11) give that A(Vr ,Vr) = 0. By

induction we have A(r1/2",r1/2") = 0; thus (12) and (d) imply (3) for all positive

rational r. Since y is an odd function the proof is complete.

Theorem 2. Let y be a near-derivation. Then there exist functions a: R—*R and

A : R2 -> R satisfying (b) and (7)—(11), respectively such that (12) holds for all x G R.

Proof. We have known that there exists a function a: R —» R with the properties

(a)-(e). Thus the function A: R2-*R given by (6) satisfies (7)-(ll). Define the

function 5 on R by

a(x) -  2 2n-xxx-x'2"xA(xx'2\xx'2")     if x > 0,

8(x) = \ "='
0 if x = 0,
-8(-x) ifx<0.

Applying Theorem 1 we get that 8 is a near-derivation. Using (6), (a) and (1) we

have for x > 0

8(x) = lim 2V",/2a(x1/2") >  lim 2nx'-1/2"y(x1/2") = y(x).
n—»00 n—»oo

Since 8 — y satisfies (1) this implies that 8 = y, thus the proof is complete.

We remark that if d is a nonidentically zero derivation and a(x) = d(d(x)),

A(x,y) = 2d(x)d(y) (x,y G R) then Theorem 1 gives the example (4).
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