ON NEAR-DERIVATIONS

GYULA MAKSA

Abstract

In this note we show how near-derivations can be expressed by biadditive and additive functions satisfying further conditions.

1. The concept of near-derivation has been introduced and discussed by Lawrence, Mess and Zorzitto [3] in connection with nonnegative information functions. A real-valued function γ defined on the reals \mathbf{R} is called a near-derivation if

$$
\begin{gather*}
\gamma(x y)=x \gamma(y)+y \gamma(x) \text { for all } x, y \in \mathbf{R}, \tag{1}\\
\gamma(x+y) \geqslant \gamma(x)+\gamma(y) \text { for all } x \geqslant 0, y \geqslant 0, \tag{2}\\
\gamma(r)=0 \text { for all rational } r . \tag{3}
\end{gather*}
$$

Daróczy and Maksa showed in [1] that there exists a near-derivation which is not a derivation. Namely, if $d: \mathbf{R} \rightarrow \mathbf{R}$ is a nonidentically zero derivation then the function γ defined by

$$
\gamma(x)= \begin{cases}d(d(x))-d(x)^{2} / x & \text { if } x \neq 0 \tag{4}\\ 0 & \text { if } x=0\end{cases}
$$

is such a near-derivation. In this note we present a method for recovering near-derivations in terms of biadditive functions on $\mathbf{R}^{\mathbf{2}}$ and additive functions on \mathbf{R} satisfying further conditions.
2. It has been proved in [3] that for any near-derivation γ the finite limit

$$
\begin{equation*}
\alpha(x)=\lim _{n \rightarrow \infty} \gamma(x+n) \tag{5}
\end{equation*}
$$

exists for all $x \in \mathbf{R}$. Furthermore, the function $\alpha: \mathbf{R} \rightarrow \mathbf{R}$ defined by (5) has the following properties:
(a) $\gamma(x) \leqslant \alpha(x)$ for all $x \geqslant 0$,
(b) $\alpha(x+y)=\alpha(x)+\alpha(y)$ for all $x, y \in \mathbf{R}$,
(c) $2 x \alpha(x) \leqslant \alpha\left(x^{2}\right)$ for all $x \in \mathbf{R}$,
(d) $\alpha(r)=0$ for all rational r.

Using (a) and (1)-(3) we have

$$
\begin{aligned}
t \alpha\left(\frac{1}{t}\right)+\frac{1}{t} \alpha(t) & =|t| \alpha\left(\frac{1}{|t|}\right)+\frac{1}{|t|} \alpha(|t|) \\
& \geqslant|t| \gamma\left(\frac{1}{|t|}\right)+\frac{1}{|t|} \gamma(|t|)=\gamma(1)=0
\end{aligned}
$$

[^0]that is,
(e) $t \alpha(1 / t)+(1 / t) \alpha(t) \geqslant 0$ for all $t \in \mathbf{R} \backslash\{0\}$.

Suppose that the function $\alpha: \mathbf{R} \rightarrow \mathbf{R}$ satisfies (b)-(e) and define $A: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
A(x, y)=\alpha(x y)-x \alpha(y)-y \alpha(x) \tag{6}
\end{equation*}
$$

It is easy to see that A has the properties:

$$
\begin{gather*}
A(x, y)=A(y, x) \tag{7}\\
A(x+y, z)=A(x, z)+A(y, z) \tag{8}\\
A(x, x) \geqslant 0 \tag{9}\\
A(x y, z)+z A(x, y)=A(x, y z)+x A(y, z) \tag{10}\\
A(t, 1 / t)<0 \tag{11}
\end{gather*}
$$

for all $x, y, z \in \mathbf{R}$ and $t \in \mathbf{R} \backslash\{0\}$. It follows from [2] that a function $A: \mathbf{R}^{2} \rightarrow \mathbf{R}$ satisfying (7)-(11) is always of the form (6) where $\alpha: \mathbf{R} \rightarrow \mathbf{R}$ has the properties (b)-(e).

Theorem 1. Suppose that the function $\alpha: \mathbf{R} \rightarrow \mathbf{R}$ satisfies (b)-(e) and define A : $\mathbf{R}^{2} \rightarrow \mathbf{R}$ by (6). Then the function γ given by

$$
\gamma(x)= \begin{cases}\alpha(x)-\sum_{n=1}^{\infty} 2^{n-1} x^{1-1 / 2^{n-1}} A\left(x^{1 / 2^{n}}, x^{1 / 2^{n}}\right) & \text { if } x>0, \tag{12}\\ 0 & \text { if } x=0, \\ -\gamma(-x) & \text { if } x<0\end{cases}
$$

is a near-derivation.
Proof. Let $\gamma_{n}(x)=2^{n} x^{1-1 / 2^{n}} \alpha\left(x^{1 / 2^{n}}\right)$ for $x>0$ and $n=0,1, \ldots$ Then

$$
\begin{equation*}
\gamma_{n}(x)-\gamma_{n-1}(x)=-2^{n-1} x^{1-1 / 2^{n-1}} A\left(x^{1 / 2^{n}}, x^{1 / 2^{n}}\right) \tag{13}
\end{equation*}
$$

Hence, by (9), we get that the sequence $\left(\gamma_{n}(x)\right)$ is decreasing for all fixed $x>0$. According to (c) and (11)

$$
\gamma_{n}(x)+x^{2} \gamma_{n-1}(1 / x) \geqslant-2^{n} x A\left(x^{1 / 2^{n}}, x^{-1 / 2^{n}}\right)>0
$$

and therefore

$$
\gamma_{n}(x) \geqslant-x^{2} \gamma_{n-1}(1 / x) \geqslant-x^{2} \gamma_{0}(1 / x),
$$

which means that the sequence $\left(\gamma_{n}(x)\right)$ is bounded below for all fixed $x>0$. Thus $\left(\gamma_{n}(x)\right)$ is convergent and its limit is in \mathbf{R}. On the other hand (13) and (12) imply that

$$
\begin{equation*}
\gamma(x)=\lim _{n \rightarrow \infty} \gamma_{n}(x) \tag{14}
\end{equation*}
$$

holds for all $x>0$. By the Cauchy-Schwarz inequality for bilinear forms on a rational vector space

$$
\begin{equation*}
|A(u, v)| \leqslant \sqrt{A(u, u)} \sqrt{A(v, v)} \tag{15}
\end{equation*}
$$

for all $u, v \in \mathbf{R}$. Let $x>0, y>0$ and $u=x^{1 / 2^{n}}, v=y^{1 / 2^{n}}(n=0,1, \ldots)$. Using (6), the definition of $\left(\gamma_{n}(x)\right)$ and (13), (15) implies that

$$
\left|\gamma_{n}(x y)-x \gamma_{n}(y)-y \gamma_{n}(x)\right| \leqslant 2 \sqrt{x y} \sqrt{\gamma_{n-1}(x)-\gamma_{n}(x)} \sqrt{\gamma_{n-1}(y)-\gamma_{n}(y)}
$$

Hence, by (14), we obtain (1) for all $x>0, y>0$. From (12) and (9) $\gamma(t) \leqslant \alpha(t)$ for $t>0$. Thus

$$
\gamma\left(\frac{x}{x+y}\right)+\gamma\left(\frac{y}{x+y}\right) \leqslant \alpha\left(\frac{x}{x+y}\right)+\alpha\left(\frac{y}{x+y}\right)=\alpha(1)=0
$$

for all $x>0, y>0$. By (1) this implies (2) for $x>0, y>0$. To prove (3) let r be a positive rational number. Then $A(r, r)=0$ therefore by (15) $A(r, u)=0$ for all $u \in \mathbf{R}$. Substituting $x=y=\sqrt{r}, z=1 / \sqrt{r}$ in (10) we see that $A(\sqrt{r}, \sqrt{r})=r A(\sqrt{r}, 1 / \sqrt{r})$. Thus (9) and (11) give that $A(\sqrt{r}, \sqrt{r})=0$. By induction we have $A\left(r^{1 / 2^{n}}, r^{1 / 2^{n}}\right)=0$; thus (12) and (d) imply (3) for all positive rational r. Since γ is an odd function the proof is complete.

Theorem 2. Let γ be a near-derivation. Then there exist functions $\alpha: \mathbf{R} \rightarrow \mathbf{R}$ and A: $\mathbf{R}^{2} \rightarrow \mathbf{R}$ satisfying (b) and (7)-(11), respectively such that (12) holds for all $x \in \mathbf{R}$.

Proof. We have known that there exists a function $\alpha: \mathbf{R} \rightarrow \mathbf{R}$ with the properties (a)-(e). Thus the function $A: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by (6) satisfies (7)-(11). Define the function δ on \mathbf{R} by

$$
\delta(x)= \begin{cases}\alpha(x)-\sum_{n=1}^{\infty} 2^{n-1} x^{1-1 / 2^{n-1}} A\left(x^{1 / 2^{n}}, x^{1 / 2^{n}}\right) & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -\delta(-x) & \text { if } x<0\end{cases}
$$

Applying Theorem 1 we get that δ is a near-derivation. Using (6), (a) and (1) we have for $x>0$

$$
\delta(x)=\lim _{n \rightarrow \infty} 2^{n} x^{1-1 / 2^{n}} \alpha\left(x^{1 / 2^{n}}\right)>\lim _{n \rightarrow \infty} 2^{n} x^{1-1 / 2^{n}} \gamma\left(x^{1 / 2^{n}}\right)=\gamma(x)
$$

Since $\delta-\gamma$ satisfies (1) this implies that $\delta=\gamma$, thus the proof is complete.
We remark that if d is a nonidentically zero derivation and $\alpha(x)=d(d(x))$, $A(x, y)=2 d(x) d(y)(x, y \in \mathbf{R})$ then Theorem 1 gives the example (4).

References

1. Z. Daróczy and Gy. Maksa, Nonnegative information functions, Analytic Function Methods in Probability and Statistics, Colloq. Math. Soc. J. Bolyai 21 (1979), 65-76.
2. B. Jessen, J. Karpf and A. Thorup, Some functional equations in groups and rings, Math. Scand. 22 (1968), 257-265.
3. J. Lawrence, G. Mess and F. Zorzitto, Near-derivations and information functions, Proc. Amer. Math. Soc. 76 (1979), 117-122.

Department of Mathematics, Kossuth University, H-4010 Debrecen, PF 12, Hungary

[^0]: Received by the editors July 6, 1979 and, in revised form, February 29, 1980. 1980 Mathematics Subject Classification. Primary 39B99.

