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ON NEAR-DERIVATIONS
GYULA MAKSA

ABSTRACT. In this note we show how near-derivations can be expressed by
biadditive and additive functions satisfying further conditions.

1. The concept of near-derivation has been introduced and discussed by
Lawrence, Mess and Zorzitto [3] in connection with nonnegative information
functions. A real-valued function y defined on the reals R is called a near-deriva-
tion if

v(x) = xy(y) + yy(x) forallx,y €R, (1)
y(x +y) > y(x) + v(») forallx >0,y >0, @
y(r) =0 for all rational r. 3)

Daréczy and Maksa showed in [1] that there exists a near-derivation which is not a
derivation. Namely, if d: R - R is a nonidentically zero derivation then the
function y defined by

+(x) = { d(d(x)) — d(x)*/x if x 0, @
0 ifx=0

is such a near-derivation. In this note we present a method for recovering

near-derivations in terms of biadditive functions on R? and additive functions on R

satisfying further conditions.

2. It has been proved in [3] that for any near-derivation vy the finite limit
a(x) = lim y(x + n) (%)

exists for all x € R. Furthermore, the function a: R — R defined by (5) has the
following properties:

(@) y(x) < a(x) forallx > O,

(b) a(x + y) = a(x) + a(y) forall x,y ER,

(©) 2xa(x) < a(x?) for all x € R,

(d) a(r) = 0 for all rational r.

Using (a) and (1)-(3) we have

ta(%) ~a() = |t|a( M) + I—:la(|t|)
> lr{ ) + v = vy =0
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that is,
@ ta(l/0) + (1/0)a(t) > Oforall € R\ {0}.
Suppose that the function a: R — R satisfies (b)-(e) and define 4: R> - R by

A(x,y) = a(xy) — xa(y) — ya(x). (6
It is easy to see that A has the properties:
A(x,y) = A(y,x), )
A(x + y,z) = A(x,z) + A(y,2), 8)
A(x,x) > 0, (&)
A(xy,z) + zA(x,y) = A(x,yz) + xA(y,z), (10)
A(,1/1) <0, (11)

for all x, y, z € R and ¢ € R\ {0}. It follows from [2] that a function 4: R >R
satisfying (7)—(11) is always of the form (6) where a: R — R has the properties
(®)-(©).

THEOREM 1. Suppose that the function a: R — R satisfies (b)—(e) and define A:
R? - R by (6). Then the function y given by

0
a(x) = D 2V (VT XYY ifx >0,

— n=1
y(x) = 0 ifx =0, (12)

-¥(-x) ifx<0
is a near-derivation.
PROOF. Let y,(x) = 2"x!"V/Za(x"/?) for x > 0andn = 0,1, .... Then
Yo%) = Yaor(x) = 20TV, 1), (13)

Hence, by (9), we get that the sequence (y,(x)) is decreasing for all fixed x > 0.
According to (c) and (11)

v, (x) + x%,_(1/x) > =2%A(x"/Z,x1/¥) > 0
and therefore
Ya(x) > =x%y,_1(1/x) > —x*(1/x),
which means that the sequence (y,(x)) is bounded below for all fixed x > 0. Thus

(7,(x)) is convergent and its limit is in R. On the other hand (13) and (12) imply
that

y(x) = lim 1,(x) (14)

holds for all x > 0. By the Cauchy-Schwarz inequality for bilinear forms on a
rational vector space

|[A(u,0)| <V A(u,u) VA(v,0) (15)
forallu,p ER. Let x >0,y >0and u = x'/%, v = /¥ (n=0,1,...). Using
(6), the definition of (y,(x)) and (13), (15) implies that

11.00) = x1,(») = 37a(%)] < 2V V¥p_1(%) = 12(x) Vi () = 7.(3)-
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Hence, by (14), we obtain (1) for all x > 0,y > 0. From (12) and (9) y(¢¥) < a(?) for
t > 0. Thus

(555) (55) <o555) r ol5i5) e =o

for all x > 0,y > 0. By (1) this implies (2) for x > 0,y > 0. To prove (3) let r be a
positive rational number. Then A(r,r) = 0 therefore by (15) A(r,u) = 0 for all
u € R. Substituting x = y =Vr, z = 1/\/7 in (10) we see that
A(NVr ,Vr)=rd(Vr,1/Vr). Thus (9) and (11) give that A(Vr,Vr) = 0. By
induction we have A(r'/%,r'/?") = 0; thus (12) and (d) imply (3) for all positive
rational r. Since y is an odd function the proof is complete.

THEOREM 2. Let y be a near-derivation. Then there exist functions a: R — R and
A: R? 5 R satisfying (b) and (7)—(11), respectively such that (12) holds for all x € R.

ProoOF. We have known that there exists a function a: R — R with the properties
(a)-(e). Thus the function 4: R2— R given by (6) satisfies (7)—(11). Define the
function é on R by

o0
a(x) = D 27 xVETY (X xVYY i x >0,

8(x) = n=1
() 0 ifx =0,

-8(-x) if x <O0.
Applying Theorem 1 we get that § is a near-derivation. Using (6), (a) and (1) we
have forx > 0

8(x) = nlirrolo 2"x !~V 2%a(x'/7) > "lmgo 21 V2 (x V) = y(x).

Since § — v satisfies (1) this implies that § = v, thus the proof is complete.
We remark that if d is a nonidentically zero derivation and a(x) = d(d(x)),
A(x,y) = 2d(x)d(y) (x,y € R) then Theorem 1 gives the example (4).
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