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ASYMPTOTIC CONDITIONS FOR PERIODIC SOLUTIONS

OF ORDINARY DIFFERENTIAL EQUATIONS

JAMES R. WARD, JR.

Abstract. We obtain sufficient conditions for the existence of periodic solutions to

differential equations of the form

XC") + am_1jt<m-'> + • • • +axx' + g(t,x) = fit)       (m > 1).

The conditions are necessary for some classes of functions, and require no growth

condition on g(t, x) for x > 0 (x < 0).

1. Introduction. We consider here ordinary differential equations of the form

x<m) + am_xxC"-X) + • • • +axx' + g(t,x)=f(t)       (m > 1).        (1.1)

Our purpose is to give a new sufficient condition for the existence of periodic

solutions of (1.1). We include the possibility that g(t, x) is bounded below by some

constant but not above. We use asymptotic conditions on g(t, x) as x —* ± oo (but

not on g(t, x)x_1). For some classes of nonlinearities our asymptotic conditions are

also necessary. Our methods also apply in case g grows slowly at -oo or depends on

the derivatives of x up to x(m~ '*, or if g is bounded above but not below. The class

of g's which we consider include g(t, x) = p(t)ex withp > 0 (or < 0).

Our results are related to some of those announced by Dancer [1], to those of

Fucik and Lovicar [2], Gupta [3], Lazer [4], Mawhin [5], Mawhin and Schmitt [7],

and Reissig [8]. Our results are in substance (but not in method) related to some of

those announced in [1]. Here we allow the nonlinearity to depend on t and the

derivatives of x and do not need the regularity assumptions made on the nonlinear-

ity in the super linear case in [1], nor do we need uniqueness for initial value

problems. Moreover our results apply to equations of arbitrary order. The papers

[l]-[5], [7], and [8] all use assumptions on the growth of the nonlinearity at each of

± oo. Here we make no assumption on the growth of g(t, x) for x > 0 (or else

none for x < 0) and this is perhaps the most interesting aspect of our results. In the

special case of m = 1 in equation (1.1) Mawhin in [6, p. 71] has obtained results

similar to ours without our condition (c2) of Theorem 1. Our results are in fact a

partial generalization to higher order equations the existence result of [6, p. 71]. The

method of obtaining a priori bounds for the solutions in [6, p. 71] is however

specific to the case of a first order equation.

_

Received by the editors February 28, 1980.

1980 Mathematics Subject Classification. Primary 34C15, 34C25.

Key words and phrases. Periodic solutions, nonlinear equations, coincidence degree.

© 1981 American Mathematical Society

0002-9939/81/0000-0116/$02.50

415



416 J. R. WARD, JR.

Our proof makes use of an abstract continuation theorem of Mawhin. For the

convenience of the reader we state this theorem in §2, and in §3 we state and prove

our theorem.

2. Preliminaries. Let X and Z be normed vector spaces, L: D(L) Ci-»Za

linear Fredholm mapping of index zero (index(L) = dim ker(L) — codim Im(L))

and N: X —» Z a continuous mapping. It follows that there exist continuous

projections P: X -* X and Q: Z -» Z such that Im(P) = ker(L) and Im(L) =

ker((2) = Im(7 — Q). Moreover the mapping L: D(L) n ker(P) -* Im(L) is invert-

ible; denote its inverse by K. Let ß be an open bounded subset of X. The mapping

N is said to be L-compact on ñ if QN(ß) is bounded and K(I — Q)N: ß -* X is

compact. Let J be an isomorphism from lm(Q) onto ker(L); such a J exists since

these subspaces have the same finite dimension.

Theorem A (Mawhin [5], [6]). Let L be a Fredholm mapping of index zero and let

N be L-compact on Q,. Suppose

(i)for each A G (0, 1) and each x G Dom L n 3ß, Lx + XNx ^ 0,

(ii) QNx 7¿ Ofor each x G ker L n 9fi and d(JQN, fl n ker L, 0) * 0^

Then the equation Lx + Nx = 0 has at least one solution in D(L) n fl.

Here d(■, •, ■) refers to the Brouwer degree.

In what follows C° will denote the linear space of real valued continuous

7-periodic functions on 7? = (-oo, oo). The linear space C° is a Banach space with

the usual norm for u G C° given by |m|0 = max,eÄ|w(/)|. By C™ (m > 1) we

denote the linear space of 7-periodic functions with m continuous derivatives. C™

is a Banach space with norm |x|m = max{|xw|0: 0 < / < m}.

3. Main results. Let g: R X 7? -> R be continuous and 7-periodic (7 > 0) in its

first variable; i.e., g(t + 7, x) = g(t, x) for all t, x. We define two measurable

functions y + , y_: R —> R u {-oo, oo} by

y + (t) = lim inf g(t, x),       t G R,
X—»OO

y_(t) = lim sup g(t, x),       t G R.
x->-oo

We assume g(t, x) is bounded below for x > 0 and bounded above for x < 0.

More precisely, we assume there are constants 8+ and 8_ with g(t, x) > 8+ for

x > 0 and g(t, x) < 8_ for x < 0.

Let ax, . . . , am_x be real constants. We consider the equation (1.1) with/ e C°.

In the following, for x G Cm, we let

Lx =x(m) + am_,x(m~1) + • • • +axx'.

Theorem I. Assume:

(cl) The only T-periodic solutions to the equation Lx = 0 are the constants.

(c2) There are numbers a and ß such that for all (t, x) G R X R, \ g(t, x)\ <

g(t, x) + a\x\ + ß.

(c3) ßy_(t) dt < fïfit) dt < JoV+(0 dt.
Then there is a number Oq > 0 such that equation (1.1) has a T-periodic solution

provided a < a0.
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Remarks. In (c3) the integral on the left may be -oo and the integral on the right

may be +00. A dual theorem is also true with y+(t) «■ lim infJC__00 g(t, x), p_(f) =

lim sup^oj, g(t, x), and (c3) holding. Also, if (c2) is replaced by | g(t, x)\ < -g(t, x)

+ a\x\ + ß, the same conclusions hold. Note that if g(t, x) is a uniformly bounded

function on R X 7? then it will satisfy (c2).

Before proving Theorem 1, we will prove the following lemma.

Lemma 1. Suppose that (cl) holds. Then there is a number y > 0 such that

y fr|x(m)| dt < fT\Lx\ dt   for all x G C?. (3.1)
•'o A)

Proof. Suppose (3.1) fails to hold. Then for each positive integer n there is a

function xn G C™ with fâxn dt = 0 and

fJ\Lx„\ dt < ±fj\xn»»\dt. (3.2)

Since we may divide each side of (3.2) by

INL^I^L-i+X^I4*
•'o

we may assume that ||xn||m = 1 and

fT\Lxn\dt<±-. (3.3)
Jo n

The set {x„}"=1 is precompact in C™-1 and hence has a subsequence which we

relabel as {xn}™=x, which converges in C™"1 to a function Jt 6 C™"1. By (3.3),

lim   fT\LxJ dt = 0.
n^°oj0    I       "'

Hence {xj,m)}™=x converges in Ll(0, 7) to -(am_,x(m_1) + • • • +axx'). Therefore,
■

since

4m~l\t) = 4m_1)(0) + f'xim\s) ds
Jo

forn= 1,2,...,  taking limits we conclude that x G Cf" and Lx = 0. Thus x is a

constant function. Moreover, since /Jxn dt = 0 for all n, x also has zero mean

value, and we have x = 0. But ||xn||m = 1 implies ||x||m = 1, and this contradiction

proves the lemma.

Proof of Theorem 1. We will apply Mawhin's theorem (§2). Let

X = Z = C£    D(L) = Cf,    L.uv^Lu   for u G D(L).

Define N: X ^> X by Nu(t) = g(t, u(t)) - fit) for u G X and / G R. Now

x G dp is a 7-periodic solution of (1.1) if and only if Lx + Nx = 0.

It is well known that L is a Fredholm operator of index zero. In fact for

u G X = Z we define

Pu = Qu =- fTu(s)ds.
1 j0

Then ker(L) = Im^) = R and Im(L) = ker(P) = Im(7 - T*), so that Im(7) is

closed and dim ker(L) = 1 and codim Im(7) = 1 also. Thus the mapping / may be
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chosen to be the identity on 7?. Moreover it is easily verified that

K = (L|ker P n Dom L)'x

is a compact mapping from Im(7 - P) onto Dom(L) = D(L). It is well known

that N maps X into itself continuously, and takes bounded sets into bounded sets.

It follows that K(I — P)N is a completely continuous self-map of X, and PN maps

bounded sets in X into bounded sets. Now we consider the family of equations

Lx + XNx =0,       0 < X < 1, (3.4)

and we will show the existence of a number p0 > 0 such that if |x|0 >p0 then

Lx + XNx * 0,0 < X < 1.

For any solution x of (3.4) we have Lx = -Xg(t, x) + Xfit) and thus by (c2)

\Lx(t)\ < g(t, x) + a\x\ + ß + \f\0. (3.5)

Integrating (3.5) from 0 to 7 and observing that, by the periodicity of x and its

derivatives, we must have Jog(t, x(t)) dt = j^fit) dt, we obtain

fT\Lx\ dt < aT\x\0 + (2\f\0 + ß)T.
Jo

By Lemma 1 we have

f V"°l dt < a7p-'|x|0 + (2\f\0 + ß)Ty-\ (3.6)
-'o

Since x is 7-periodic there are numbers zx, . . ., zm_x in [0, 7] with x^k\zk) = 0,

I <k < m- I. Using (3.6) and x(k\t) = Jjkx(k-X\s) ds we obtain

\xw\0<aTm-ky-l\x\0+ Ck,        1 < k < m - 1, (3.7)

where Ck = 7"-V(2|/|0 + /?)■

We will now show that there is a number r0 > 0 such that for each solution x to

(3.4) there is a number z G [0, 7] with \x(z)\ < r0. Suppose that for each positive

integer n there is a \ G (0, 1) and a solution x„ of Lx + X„Nx = 0 with xn(s) > n

for all j G R. Then integrating

Lx„ + X„g(t, x„) = XJ(t)

from 0 to 7 and using the periodicity of xn, we obtain

fTg(t,x„(t))dt = fTf(t)dt.
Jo Jo

But lim inf,,^ g(t, x„(t)) > y+(t).

By Fatou's lemma (here we use g(t, x) > 8+ for all x > 0) we have

fTf(t) dt = lim inf [Tg(t, xn(t)) dt > fTy+(t) dt
J0 n-»oo    ./0 J0

which contradicts (c3). Thus there is a number rx > 0 such that if x is a solution of

(3.4) for any 0 < X < 1 there is a number sx G [0, 7] with x(sx) < rx. Similarly by

using p_ and Fatou's lemma one may show the existence of a number r2 > 0 such

that for any solution x there is a number î2 G [0, 7] with x(5j) > -r2. By continu-

ity of x there is a z G [0, 7] with |x(z)| < r0, r0 = max{r,, r2).

Using (3.7) we now have from x(t) = f'zx'(s) ds + x(z) that |x|0 < r0 + CXT +

aTmy-'\x\0.
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Thus if 0 < a < a0 = yT~m then

|x|0<(l-a7V)"Vo+C17)=p0.

If r > p0 then (3.4) has no solutions with |k|0 > r. This verifies (i) of Mawhin's

theorem for any

ß = ßr = {m G C£: |k|o </•}    if r>p0.

We now verify (ii) of Mawhin's theorem. Let x G ker L n 3flr; then x G R and

x = ±r. We have

£Wx = — /    g(s, x)ds - — /   /(i) <fc.
•«   •/0 *  •'0

By (c3) and two more applications of Fatou's lemma we have the existence of a

p, > 0 such that r > px implies QN(r) > 0 and QN(-r) < 0. Let d = max{p0,p,}

+ 1, and ß = {u G C°: |u|0 < d}. We have Lx + XNx ¥= 0 for 0 < X < 1 and

x G aß, QNx ^ 0 for x G ker L n 3ß, and i/(£W, ker 7 n 9ß, 0) # 0. By

Mawhin's theorem there is a solution to the equation Lx + Nx = 0 in ß. That is,

equation (1.1) has a 7-periodic solution.

Example. Let ax, .. ., am_x be real numbers such that the equation rm~l +

am_xrm~2 + ■ ■ ■ +ax = 0 has no roots of the form 2niri/T, n an integer, n ¥* 0.

Then the equation x(m) + am_,x(m~1) + • • • +axx' = 0 has no 7-periodic solu-

tions except the constants. By Theorem 1 the equation

x(m) + am_,x(m-1) + • • • +axx' + p(t)ex = fit)

has a 7-periodic solution if p, f are continuous 7-periodic functions with p > 0

( < 0),p * 0, and ¡If > 0 (< 0).
Extensions. One could assume only Carathéodory conditions on g and / and

obtain similar results.

If g(t, x) in (1.1) is replaced by g(t, x, x', . . . , x<m_l)) similar results can be

proven. Assume the existence of functions y± satisfying

y + (t) < lim inf g(t, x,yx, . . .,ym_x)
X—»OO

and

y_(t) > lim sup g(t, x,yx, . . . ,ym_x)
X—»-00

uniformly for ( v,, . . ., vm_,) in compact subsets of 7?m-1. Assume the existence of

nonnegative numbers a0, . . . , am_x, ß such that

\g(t, x,yx, . . . , vm_,)| < g(*' *»^i» • • • >ym-i)

+ a0|x|+ 01,^,1+ • • •  +am_x\ym_x\+ ß.

If the other hypotheses of Theorem 1 now hold, there is a number e0> 0 such that

this new problem has a 7-periodic solution if max{a,: 0 < i < m — 1} < e0. The

proof is much the same as that of Theorem 1.

If g(t, x) is strictly increasing in x for fixed t then (c3) can be seen to be

necessary for a 7-periodic solution.
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Theorem 1 could also be extended to «-dimensional vector differential equations

analogous to (1.1) by making hypotheses such as those of Theorem 7.1 of [5] on the

linear part of the equation and appropriate hypotheses on the components g¡(t, x)

of the nonlinear part g(t, x) = (g¡(t, x)).
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