HOLOMORPHIC MAPS THAT EXTEND TO AUTOMORPHISMS OF A BALL

WALTER RUDIN ${ }^{1}$

Abstract

It is proved, under hypotheses that may be close to minimal, that certain types of biholomorphic maps of subregions of the unit ball in \mathbf{C}^{n} have the extension property to which the title alludes.

Let B (or B_{n}, when necessary) denote the open unit ball of C^{n}. Thus $z=$ $\left(z_{1}, \ldots, z_{n}\right) \in B$ provided that $|z|<1$, where $|z|=\langle z, z\rangle^{1 / 2}$ and $\langle z, w\rangle=\sum z_{j} \bar{w}_{j}$. An automorphism of B, i.e., a member of $\operatorname{Aut}(B)$, is, by definition, a holomorphic map of B onto B that is one-to-one, and whose inverse is therefore also holomorphic. The sphere that bounds B is denoted by S.

The following extension theorem will be proved.
Theorem. Assume that $n>1$, and that
(a) Ω_{1} and Ω_{2} are connected open subsets of B,
(b) for $j=1,2, \Gamma_{j}$ is an open subset of S such that $\Gamma_{j} \subset \partial \Omega_{j}$,
(c) F is a holomorphic one-to-one map of Ω_{1} onto Ω_{2}, and
(d) there is a point $\alpha \in \Gamma_{1}$, not a limit point of $B \cap \partial \Omega_{1}$, and a sequence $\left\{a_{i}\right\}$ in Ω_{1}, converging to α, such that $\left\{F\left(a_{i}\right)\right\}$ converges to a point $\beta \in \Gamma_{2}$, not a limit point of $B \cap \partial \Omega_{2}$.

Then there exists $\Phi \in \operatorname{Aut}(B)$ such that $\Phi(z)=F(z)$ for all $z \in \Omega_{1}$.
The relation of this theorem to earlier results will be discussed after its proof.
The proof will use the following well-known facts.
(I) If $F: B_{k} \rightarrow B_{n}$ is holomorphic, and $F(0)=0$, then $\left|F(z) \leqslant|z|\right.$ for all $z \in B_{k}$, and the linear operator $F^{\prime}(0)($ the Fréchet derivative of F at 0$)$ maps B_{k} into B_{n}.
(II) If, in addition, $k=n$, then the Jacobian $J F$ of F satisfies $|(J F)(0)|<1$; equality holds only when F is a unitary operator on \mathbf{C}^{n}.
(III) If $F \in \operatorname{Aut}(B)$ and $F(0)=0$, then F is unitary.

Here is a brief indication of how these are proved. For unit vectors u and v in C^{k} and \mathbf{C}^{n}, respectively, the classical Schwarz lemma applies to the function g defined by

$$
\begin{equation*}
g(\lambda)=\langle F(\lambda u), v\rangle, \quad(\lambda \in \mathbf{C},|\lambda|<1) . \tag{1}
\end{equation*}
$$

[^0]Thus $|g(\lambda)|<|\lambda|$ for all eligible u, v, which leads to $|F(z)|<|z|$, and $\left|g^{\prime}(0)\right| \leqslant 1$, which completes (I), since

$$
\begin{equation*}
g^{\prime}(0)=\left\langle F^{\prime}(0) u, v\right\rangle \tag{2}
\end{equation*}
$$

Since (I) implies that no eigenvalue of $F^{\prime}(0)$ exceeds 1 in absolute value, it follows that

$$
\begin{equation*}
|(J F)(0)|=\left|\operatorname{det} F^{\prime}(0)\right|<1 \tag{3}
\end{equation*}
$$

If $|(J F)(0)|=1$, then the linear operator $F^{\prime}(0)$ preserves volume, and maps B into B, hence is a unitary operator U. From this it follows easily (by considering iterates of $U^{-1} F$) that $F=U$.

To prove (III), apply (II) to F as well as to F^{-1}.
The following lemma contains the essence of the proof of the theorem. To state $i t$, we introduce the notation (for $z \in \mathbf{C}^{\text {n }}$)

$$
\begin{equation*}
D_{z}=\{\lambda z: \lambda \in \mathbf{C}, \lambda z \in B\} \tag{4}
\end{equation*}
$$

Thus, when $z \neq 0, D_{z}$ is the disc that is the intersection with B of the complex line through 0 and z.

Lemma. Assume that
(i) Ω_{1} and Ω_{2} are connected open sets in B,
(ii) $0 \in \Omega_{1}, 0 \in \Omega_{2}$.
(iii) F is a holomorphic one-to-one map of Ω_{1} onto Ω_{2}, with $F(0)=0$, and
(iv) there is a nonempty open set $V \subset \Omega_{1}$, such that $D_{z} \subset \Omega_{1}$ and $D_{F(z)} \subset \Omega_{2}$ for every $z \in V$.

Then there is a unitary transformation U on \mathbf{C}^{n} such that $F(z)=U z$ for all $z \in \Omega_{1}$.
Proof of the Lemma. If $z \in V$, then D_{z} lies in the domain of F. Identifying D_{z} with B_{1}, we see from fact (I) (the case $k=1$), that $|w| \leqslant|z|$, where $w=F(z)$. But D_{w} lies in the domain of F^{-1}, and the same argument shows that $|z| \leq|w|$. Thus $|F(z)|^{2}=|z|^{2}$ for all $z \in V$. Both of these functions are real-analytic, hence they are equal in all of Ω_{1}. In particular, choosing $r>0$ so small that $r B \subset \Omega_{1}$, we see that $|F(z)|=|z|$ for all $z \in r B$. An appropriately scaled version of fact (III) shows now that F is unitary.

Proof of the Theorem. Let $\left\{a_{i}\right\}$ be as in assumption (d), put $b_{i}=F\left(a_{i}\right)$, and choose $u_{i} \in S, v_{i} \in S$, so that

$$
\begin{equation*}
a_{i}=\left|a_{i}\right| u_{i}, \quad b_{i}=\left|b_{i}\right| v_{i}, \quad(i=1,2,3, \ldots) \tag{5}
\end{equation*}
$$

The geometric information contained in (d) shows that there exists $t<1$ such that, setting

$$
\begin{equation*}
E_{t}(\xi)=\{z \in B: t<\operatorname{Re}\langle z, \xi\rangle\}, \quad(\xi \in S) \tag{6}
\end{equation*}
$$

we have $a_{i} \in E_{t}\left(u_{i}\right) \subset \Omega_{1}$, and $b_{i} \in E_{t}\left(v_{i}\right) \subset \Omega_{2}$ for all sufficiently large i, say $i>i_{0}$.
If $a \in B \backslash\{0\}$, let P denote the orthogonal projection of \mathbf{C}^{n} onto the one-dimensional subspace spanned by a, put $Q=I-P$, and define

$$
\begin{equation*}
\varphi_{a}(z)=\frac{a-P z-\left(1-|a|^{2}\right)^{1 / 2} Q z}{1-\langle z, a\rangle}, \quad(z \in \bar{B}) \tag{7}
\end{equation*}
$$

Then (see [4], for instance) $\varphi_{a} \in \operatorname{Aut}(B)$ and $\varphi_{a}^{-1}=\varphi_{a}$. Define

$$
\begin{equation*}
G_{i}=\varphi_{b_{i}} \circ F \circ \varphi_{a_{i}}, \quad\left(i>i_{0}\right) . \tag{8}
\end{equation*}
$$

Each G_{i} is a holomorphic one-to-one map of $\Omega_{1}^{i}=\varphi_{a_{1}}\left(\Omega_{1}\right)$ onto $\Omega_{2}^{i}=\varphi_{b_{1}}\left(\Omega_{2}\right)$, and $G_{i}(0)=0$.

If $a=|a| \xi$, then $\langle P z, \xi\rangle=\langle z, \xi\rangle \xi$, hence

$$
\begin{equation*}
\left\langle\varphi_{a}(z), \xi\right\rangle=(|a|-\langle z, \xi\rangle) /(1-|a|\langle z, \xi\rangle) . \tag{9}
\end{equation*}
$$

If $t<|a|$, it follows that $\varphi_{a}\left(E_{t}(\xi)\right)$ contains all $z \in B$ with

$$
\begin{equation*}
\operatorname{Re}\langle z, \xi\rangle<(|a|-t) /(1-|a| t) . \tag{10}
\end{equation*}
$$

Since $\left|a_{i}\right| \rightarrow 1$ and $\left|b_{i}\right| \rightarrow 1$, and since the right side of (10) tends to 1 as $|a|$ tends to 1 , there is a sequence $\left\{r_{i}\right\}, r_{i}<1$, such that $r_{i} \rightarrow 1$ as $i \rightarrow \infty$, and such that

$$
\begin{align*}
& z \in B, \operatorname{Re}\left\langle z, u_{i}\right\rangle<r_{i} \text { implies } z \in \Omega_{1}^{i}, \tag{11}\\
& w \in B, \operatorname{Re}\left\langle z, v_{i}\right\rangle<r_{i} \text { implies } w \in \Omega_{2}^{i} . \tag{12}
\end{align*}
$$

By (11), $r_{i} B \subset \Omega_{1}^{i}$, the domain of G_{i}. Since $G_{i}(0)=0$, fact (II) gives $\left|\left(J G_{i}\right)(0)\right| \leqslant$ r_{i}^{-n}. In the same way, (12) leads to $\left|\left(J G_{i}^{-1}\right)(0)\right|<r_{i}^{-n}$, so that $\left|\left(J G_{i}\right)(0)\right| \geqslant r_{i}^{n}$. A normal family argument shows now that a subsequence of $\left\{G_{i}\right\}$ converges, uniformly on compact subsets of B, to a holomorphic map of B into B that fixes 0 and whose Jacobian at 0 has absolute value 1 . By fact (II), this limit map is unitary. Call it U.

Let V_{i} be the set of all $p \in B$ such that

$$
\begin{equation*}
D_{z} \subset \Omega_{1}^{i} \quad \text { and } \quad D_{U_{z}} \subset \Omega_{2}^{i} \tag{13}
\end{equation*}
$$

for all z in some neighborhood of p.
Now fix $\varepsilon, 0<\varepsilon<1 / 10$. Using (11)-(13), we see that there is an index i, fixed from now on, such that

$$
\begin{equation*}
\left|G_{i}(z)-U z\right|<\varepsilon \quad \text { whenever }|z|<1-\varepsilon \tag{14}
\end{equation*}
$$

and such that V_{i} contains a ball of radius 2ε, whose center p satisfies $|p|<1-3 \varepsilon$. To see in more detail that this can indeed be done, note that when r_{i} is sufficiently close to 1 , there exists a large set of points $\xi \in S$ such that $\left|\left\langle\xi, u_{i}\right\rangle\right|<r_{i}$ and $\left|\left\langle\xi, U^{-1} v_{i}\right\rangle\right|<r_{i}$. For any such $\xi, D_{\xi} \subset \Omega_{1}^{i}$ and $D_{U \xi} \subset \Omega_{2}^{i}$, thus $\lambda \xi \in V_{i}$ if $0<|\lambda|<$ 1.

Thus $D_{z} \subset \Omega_{1}^{i}$ if $|z-p|<2 \varepsilon$, and $D_{w} \subset \Omega_{2}^{i}$ if $|w-U p|<2 \varepsilon$. If $|z-p|<\varepsilon$, and $w=G_{i}(z)$, it follows that $D_{w} \subset \Omega_{2}^{i}$ because

$$
\begin{equation*}
\left|w-U_{p}\right| \leqslant\left|G_{i}(z)-U z\right|+|z-p|<2 \varepsilon . \tag{15}
\end{equation*}
$$

The lemma applies therefore to G_{i} and shows that G_{i} is (the restriction of) a unitary operator. Since (8) gives

$$
\begin{equation*}
F=\varphi_{b_{i}} \circ G_{i} \circ \varphi_{a_{i}} \tag{16}
\end{equation*}
$$

the theorem is proved.
Remarks. (i) Let Ω be a connected open subset of B such that $\bar{\Omega}$ contains an open subset Γ of S. If F is a nonconstant C^{1}-map of $\bar{\Omega}$ into \bar{B} that is holomorphic in Ω and carries Γ into S, then $F \in \operatorname{Aut}(B)$. This was proved by Pinčuk [6, p. 381],
who extended an earlier version due to Alexander [1] in which C^{∞} was assumed in place of C^{1}.

This Alexander-Pinčuk result is a fairly direct corollary of the present theorem. If $F \in C^{1}(\bar{\Omega})$ satisfies the Alexander-Pinčuk hypotheses, it is not hard to show (see Fornaess [3, p. 549] or Pinčuk [6, p. 378]) that $J F$ vanishes at no point of Γ. The inverse function theorem implies then that the hypotheses of the present theorem hold.
(ii) In Alexander's proof [2] that every proper holomorphic map of B into B is in Aut (B) when $n>1$, his appeal to Fefferman's theorem can be replaced by the one proved in the present paper. Consequently, there exists now a much more elementary proof of the proper mapping theorem for B.
(iii) It is quite possible that the present theorem remains true if B is replaced by strictly pseudoconvex domains with real-analytic boundaries (as Pinčuk did in the C^{1}-case [7]), but an entirely different proof would have to be found; Rosay [8] (strengthening a result of Wong [9]) proved that if some boundary point ξ of a bounded domain $\Omega \subset \mathbf{C}^{n}$ is a point of strict pseudoconvexity, and if there exist automorphisms T_{k} of Ω such that $\lim _{k \rightarrow \infty} T_{k}(p)=\xi$ for some $p \in \Omega$, then Ω is biholomorphically equivalent to B.
In other strictly pseudoconvex bounded domains there are thus insufficiently many automorphisms to imitate the proof that works in B.
(iv) If $\xi \in S$ and $\Omega=B \cap\{z:|\xi-z|<1\}$; in other words, if $\Omega=B \cap(\xi+B)$, then the map $z \rightarrow \xi-z$ of Ω onto Ω demonstrates the relevance of the assumptions concerning the location of the points α and β in our theorem.

References

1. H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249-256.
2. _ Proper holomorphic mappings in C ${ }^{n}$, Indiana Univ. Math. J. 26 (1977), 137-146.
3. J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569.
4. A. Nagel and W. Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J. 43 (1976), 841-865.
5. S. I. Pinčuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 644-649.
6. \qquad , On the analytic continuation of holomorphic mappings, Math. USSR-Sb. 27 (1975), 375-392.
7. \qquad , Analytic continuation of mappings along strictly pseudoconvex hypersurfaces, Soviet Math. Dokl. 18 (1977), 1237-1240.
8. J. P. Rosay, Sur une caractérisation de la boule parmi les domaines de C'par son groupe d'automorphismes, Ann. Inst. Fourier 29 (1979), 91-97.
9. B. Wong, Characterization of the unit ball in $\mathbf{C}^{\text {n }}$ by its automorphism group, Invent. Math. 41 (1977), 253-257.

[^0]: Received by the editors January 8, 1980.
 AMS (MOS) subject classifications (1970). Primary 32D15.
 ${ }^{1}$ This research was partially supported by NSF Grant MCS 78-06860, and by the William F. Vilas Trust Estate.

