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HOLOMORPHIC MAPS THAT EXTEND
TO AUTOMORPHISMS OF A BALL

WALTER RUDIN!

ABSTRACT. It is proved, under hypotheses that may be close to minimal, that
certain types of biholomorphic maps of subregions of the unit ball in C* have the
extension property to which the title alludes.

Let B (or B,, when necessary) denote the open unit ball of C". Thus z =
(21 - - - » 2,) € B provided that |z| < 1, where |z| = (z, z)"/? and <z, w) = = z;w,.
An automorphism of B, i.e., a member of Aut(B), is, by definition, a holomorphic
map of B onto B that is one-to-one, and whose inverse is therefore also holomor-
phic. The sphere that bounds B is denoted by S.

The following extension theorem will be proved.

THEOREM. Assume that n > 1, and that

(a) @, and Q, are connected open subsets of B,

(b) for j = 1, 2, T, is an open subset of S such that T; C 9%,

(c) F is a holomorphic one-to-one map of Q, onto Q,, and

(d) there is a point a € T, not a limit point of B N 9Q,, and a sequence {a;} in Q,,
converging to a, such that {F(a;)} converges to a point B € I'y, not a limit point of
B N 9Q,.

Then there exists ® € Aut(B) such that ®(z) = F(z) for all z € Q,.

The relation of this theorem to earlier results will be discussed after its proof.

The proof will use the following well-known facts.

() If F: B, —> B, is holomorphic, and F(0) = O, then |F(z) < |z| for all z € B,,
and the linear operator F'(0) (the Fréchet derivative of F at 0) maps B, into B,.

() If, in addition, k = n, then the Jacobian JF of F satisfies |(JF)O0)| < 1;
equality holds only when F is a unitary operator on C".

(ITD) If F € Aut(B) and F(0) = 0, then F is unitary.

Here is a brief indication of how these are proved. For unit vectors  and v in C*
and C”", respectively, the classical Schwarz lemma applies to the function g defined
by

gA) = (Fw), vy, A ECR <. (1
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Thus | g(A)| < |A| for all eligible u, v, which leads to |F(z)| < |z|, and |g’(0)] < 1,
which completes (I), since

g'(0) = (F'(0)u, v). 2
Since (I) implies that no eigenvalue of F'(0) exceeds 1 in absolute value, it
follows that
|(JF)(0)| = |det F'(0)| < 1. 3
If |(JF)(0)| = 1, then the linear operator F’(0) preserves volume, and maps B into
B, hence is a unitary operator U. From this it follows easily (by considering iterates
of U"'F) that F = U.
To prove (I1I), apply (II) to F as well as to F~'.
The following lemma contains the essence of the proof of the theorem. To state
it, we introduce the notation (for z € C*)

D, = {Az: A\ € C, Az € B}. 4)

Thus, when z # 0, D, is the disc that is the intersection with B of the complex line
through 0 and z.

LEMMA. Assume that

(i) Q, and Q, are connected open sets in B,

(i)0 € Q,,0 € Q,.

(iii) F is a holomorphic one-to-one map of Q, onto ,, with F(0) = 0, and

(iv) there is a nonempty open set V C Qy, such that D, C @, and D, C Q, for
everyz € V.

Then there is a unitary transformation U on C" such that F(z) = Uz for all z € Q,.

PROOF OF THE LEMMA. If z € ¥, then D, lies in the domain of F. Identifying D,
with B,, we see from fact (I) (the case k = 1), that |w| < |z|, where w = F(z). But
D, lies in the domain of F~!, and the same argument shows that |z| < |w|. Thus
| F(2)]> = |z|* for all z € V. Both of these functions are real-analytic, hence they
are equal in all of Q,. In particular, choosing r > 0 so small that rB C Q,, we see
that |F(z)| = |z| for all z € rB. An appropriately scaled version of fact (III) shows
now that F is unitary.

PROOF OF THE THEOREM. Let {a;} be as in assumption (d), put b, = F(a,), and
choose ¥, € S, v; € S, so that

a,=|alu, b, =|bly, (i=1273...). (5)
The geometric information contained in (d) shows that there exists # < 1 such that,
setting
E(f{) ={z € B:t <Re{z, £}, (¢t s), (6)
we have q; € E(u;) C ©,, and b, € E(v)) C , for all sufficiently large i, say i > i,
If a € B\ {0}, let P denote the orthogonal projection of C" onto the one-dimen-
sional subspace spanned by a, put Q = I — P, and define

a-Pz—(1-|aP)’?Qz

9,(2) = 1-<z, a> ’ (z e E) ™
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Then (see [4], for instance) ¢, € Aut(B) and @;' = ¢,. Define
G = Py, ° Fo Pa» (i > ip). (3)
Each G, is a holomorphic one-to-one map of @} = ?,(%,) onto @ = ®,,(82), and
G(0) = 0.
If a = |a|¢, then (Pz, £) = (z, £)&, hence

$u(2), & = (la| = <z, £>)/ (1 — |al{z, £)). &)
If t < |a|, it follows that ¢,(E,(£)) contains all z € B with
Redz, ) < (la| — 1)/ (1 — |a|1). (10)

Since |a;| — 1 and |b,| — 1, and since the right side of (10) tends to 1 as |a| tends
to 1, there is a sequence {r,;}, r; < 1, such that r, - 1 as i — oo, and such that
z € B,Re(z, y;) < r; implies z € &, (11)
w € B, Re(z, v;) < r; impliesw € Q4. (12)
By (11), r,B C ©}, the domain of G;. Since G,(0) = 0, fact (II) gives |(JG)O0)| <
r". In the same way, (12) leads to |(JG,')0)| < /", so that [(JGXO)| > r". A
normal family argument shows now that a subsequence of {G;} converges, uni-
formly on compact subsets of B, to a holomorphic map of B into B that fixes 0 and
whose Jacobian at 0 has absolute value 1. By fact (II), this limit map is unitary.
Callit U.
Let V, be the set of all p € B such that
D,cQ and D, Cc (13)
for all z in some neighborhood of p.
Now fix ¢, 0 < ¢ < 1/10. Using (11)-(13), we see that there is an index i, fixed
from now on, such that
|G,(z) — Uz| <& whenever |z] < 1 — ¢, (14)
and such that V; contains a ball of radius 2¢, whose center p satisfies |p| < 1 — 3e.
To see in more detail that this can indeed be done, note that when r; is sufficiently
close to 1, there exists a large set of points £ € S such that |<{ ¥,>| <r; and
K¢, U™';>| < r,. For any such ¢, D, C 2 and Dy, C @, thus M € V;if 0 < A| <
L.
Thus D, C @ if |z — p| < 2¢, and D, C @ if |w — Up| < 2e. If |z — p| <,
and w = G,(2), it follows that D, C Q) because
|w — Up| < |G{(2z) — Uz| + |z — p| < 2e. (15)
The lemma applies therefore to G; and shows that G; is (the restriction of) a
unitary operator. Since (8) gives

F=q,°G q, (16)

the theorem is proved.

REMARKS. (i) Let  be a connected open subset of B such that @ contains an
open subset I of S. If F is a nonconstant C'-map of  into B that is holomorphic
in € and carries I into S, then F € Aut(B). This was proved by Pincuk [6, p. 381],
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who extended an earlier version due to Alexander [1] in which C* was assumed in
place of C'.

This Alexander-Pincuk result is a fairly direct corollary of the present theorem. If
F € C'(Q) satisfies the Alexander-Pinéuk hypotheses, it is not hard to show (see
Fornaess [3, p. 549] or Pincuk [6, p. 378]) that JF vanishes at no point of I'. The
inverse function theorem implies then that the hypotheses of the present theorem
hold.

(ii) In Alexander’s proof [2] that every proper holomorphic map of B into B is in
Aut(B) when n > 1, his appeal to Fefferman’s theorem can be replaced by the one
proved in the present paper. Consequently, there exists now a much more elemen-
tary proof of the proper mapping theorem for B.

(iii) It is quite possible that the present theorem remains true if B is replaced by
strictly pseudoconvex domains with real-analytic boundaries (as PinCuk did in the
C'-case [7]), but an entirely different proof would have to be found; Rosay [8]
(strengthening a result of Wong [9]) proved that if some boundary point £ of a
bounded domain @ c C" is a point of strict pseudoconvexity, and if there exist
automorphisms 7, of Q such that lim,_  T,(p) = £ for some p € Q, then @ is
biholomorphically equivalent to B.

In other strictly pseudoconvex bounded domains there are thus insufficiently
many automorphisms to imitate the proof that works in B.

@v)If¢ € Sand @ = BN {z: |{ — z| < 1}; in other words, if @ = B N (¢ + B),
then the map z — § — z of © onto £ demonstrates the relevance of the assumptions
concerning the location of the points a and 8 in our theorem.
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