HOLOMORPHIC MAPS THAT EXTEND TO AUTOMORPHISMS OF A BALL

WALTER RUDIN¹

ABSTRACT. It is proved, under hypotheses that may be close to minimal, that certain types of biholomorphic maps of subregions of the unit ball in Cⁿ have the extension property to which the title alludes.

Let B (or B_n , when necessary) denote the open unit ball of \mathbb{C}^n . Thus $z = (z_1, \ldots, z_n) \in B$ provided that |z| < 1, where $|z| = \langle z, z \rangle^{1/2}$ and $\langle z, w \rangle = \sum z_j \overline{w_j}$. An automorphism of B, i.e., a member of Aut(B), is, by definition, a holomorphic map of B onto B that is one-to-one, and whose inverse is therefore also holomorphic. The sphere that bounds B is denoted by S.

The following extension theorem will be proved.

THEOREM. Assume that n > 1, and that

- (a) Ω_1 and Ω_2 are connected open subsets of B,
- (b) for $j = 1, 2, \Gamma_i$ is an open subset of S such that $\Gamma_i \subset \partial \Omega_i$,
- (c) F is a holomorphic one-to-one map of Ω_1 onto Ω_2 , and
- (d) there is a point $\alpha \in \Gamma_1$, not a limit point of $B \cap \partial \Omega_1$, and a sequence $\{a_i\}$ in Ω_1 , converging to α , such that $\{F(a_i)\}$ converges to a point $\beta \in \Gamma_2$, not a limit point of $B \cap \partial \Omega_2$.

Then there exists $\Phi \in \operatorname{Aut}(B)$ such that $\Phi(z) = F(z)$ for all $z \in \Omega_1$.

The relation of this theorem to earlier results will be discussed after its proof.

The proof will use the following well-known facts.

- (I) If $F: B_k \to B_n$ is holomorphic, and F(0) = 0, then $|F(z)| \le |z|$ for all $z \in B_k$, and the linear operator F'(0) (the Fréchet derivative of F at 0) maps B_k into B_n .
- (II) If, in addition, k = n, then the Jacobian JF of F satisfies $|(JF)(0)| \le 1$; equality holds only when F is a unitary operator on \mathbb{C}^n .
 - (III) If $F \in Aut(B)$ and F(0) = 0, then F is unitary.

Here is a brief indication of how these are proved. For unit vectors u and v in C^k and C^n , respectively, the classical Schwarz lemma applies to the function g defined by

$$g(\lambda) = \langle F(\lambda u), v \rangle, \quad (\lambda \in \mathbb{C}, |\lambda| < 1).$$
 (1)

Received by the editors January 8, 1980.

AMS (MOS) subject classifications (1970). Primary 32D15.

¹This research was partially supported by NSF Grant MCS 78-06860, and by the William F. Vilas Trust Estate.

Thus $|g(\lambda)| < |\lambda|$ for all eligible u, v, which leads to |F(z)| < |z|, and |g'(0)| < 1, which completes (I), since

$$g'(0) = \langle F'(0)u, v \rangle. \tag{2}$$

Since (I) implies that no eigenvalue of F'(0) exceeds 1 in absolute value, it follows that

$$|(JF)(0)| = |\det F'(0)| \le 1.$$
 (3)

If |(JF)(0)| = 1, then the linear operator F'(0) preserves volume, and maps B into B, hence is a unitary operator U. From this it follows easily (by considering iterates of $U^{-1}F$) that F = U.

To prove (III), apply (II) to F as well as to F^{-1} .

The following lemma contains the essence of the proof of the theorem. To state it, we introduce the notation (for $z \in \mathbb{C}^n$)

$$D_z = \{\lambda z \colon \lambda \in \mathbb{C}, \lambda z \in B\}. \tag{4}$$

Thus, when $z \neq 0$, D_z is the disc that is the intersection with B of the complex line through 0 and z.

LEMMA. Assume that

- (i) Ω_1 and Ω_2 are connected open sets in B,
- (ii) $0 \in \Omega_1$, $0 \in \Omega_2$.
- (iii) F is a holomorphic one-to-one map of Ω_1 onto Ω_2 , with F(0) = 0, and
- (iv) there is a nonempty open set $V \subset \Omega_1$, such that $D_z \subset \Omega_1$ and $D_{F(z)} \subset \Omega_2$ for every $z \in V$.

Then there is a unitary transformation U on \mathbb{C}^n such that F(z) = Uz for all $z \in \Omega_1$.

PROOF OF THE LEMMA. If $z \in V$, then D_z lies in the domain of F. Identifying D_z with B_1 , we see from fact (I) (the case k=1), that |w| < |z|, where w=F(z). But D_w lies in the domain of F^{-1} , and the same argument shows that |z| < |w|. Thus $|F(z)|^2 = |z|^2$ for all $z \in V$. Both of these functions are real-analytic, hence they are equal in all of Ω_1 . In particular, choosing r>0 so small that $rB \subset \Omega_1$, we see that |F(z)|=|z| for all $z \in rB$. An appropriately scaled version of fact (III) shows now that F is unitary.

PROOF OF THE THEOREM. Let $\{a_i\}$ be as in assumption (d), put $b_i = F(a_i)$, and choose $u_i \in S$, $v_i \in S$, so that

$$a_i = |a_i|u_i, \quad b_i = |b_i|v_i, \quad (i = 1, 2, 3, ...).$$
 (5)

The geometric information contained in (d) shows that there exists t < 1 such that, setting

$$E_t(\xi) = \{ z \in B : t < \operatorname{Re}\langle z, \xi \rangle \}, \quad (\xi \in S), \tag{6}$$

we have $a_i \in E_t(u_i) \subset \Omega_1$, and $b_i \in E_t(v_i) \subset \Omega_2$ for all sufficiently large i, say $i > i_0$. If $a \in B \setminus \{0\}$, let P denote the orthogonal projection of \mathbb{C}^n onto the one-dimensional subspace spanned by a, put Q = I - P, and define

$$\varphi_a(z) = \frac{a - Pz - (1 - |a|^2)^{1/2} Qz}{1 - \langle z, a \rangle}, \quad (z \in \overline{B}).$$
 (7)

Then (see [4], for instance) $\varphi_a \in \operatorname{Aut}(B)$ and $\varphi_a^{-1} = \varphi_a$. Define

$$G_i = \varphi_{b_i} \circ F \circ \varphi_{a_i}, \qquad (i > i_0). \tag{8}$$

Each G_i is a holomorphic one-to-one map of $\Omega_1^i = \varphi_{a_i}(\Omega_1)$ onto $\Omega_2^i = \varphi_{b_i}(\Omega_2)$, and $G_i(0) = 0$.

If $a = |a|\xi$, then $\langle Pz, \xi \rangle = \langle z, \xi \rangle \xi$, hence

$$\langle \varphi_a(z), \xi \rangle = (|a| - \langle z, \xi \rangle) / (1 - |a| \langle z, \xi \rangle). \tag{9}$$

If t < |a|, it follows that $\varphi_a(E_t(\xi))$ contains all $z \in B$ with

$$\operatorname{Re}\langle z,\xi\rangle<(|a|-t)/(1-|a|t). \tag{10}$$

Since $|a_i| \to 1$ and $|b_i| \to 1$, and since the right side of (10) tends to 1 as |a| tends to 1, there is a sequence $\{r_i\}$, $r_i < 1$, such that $r_i \to 1$ as $i \to \infty$, and such that

$$z \in B$$
, $\text{Re}\langle z, u_i \rangle < r_i$ implies $z \in \Omega_1^i$, (11)

$$w \in B$$
, $\operatorname{Re}\langle z, v_i \rangle < r_i$ implies $w \in \Omega_2^i$. (12)

By (11), $r_i B \subset \Omega_1^i$, the domain of G_i . Since $G_i(0) = 0$, fact (II) gives $|(JG_i)(0)| < r_i^{-n}$. In the same way, (12) leads to $|(JG_i^{-1})(0)| < r_i^{-n}$, so that $|(JG_i)(0)| > r_i^n$. A normal family argument shows now that a subsequence of $\{G_i\}$ converges, uniformly on compact subsets of B, to a holomorphic map of B into B that fixes 0 and whose Jacobian at 0 has absolute value 1. By fact (II), this limit map is unitary. Call it U.

Let V_i be the set of all $p \in B$ such that

$$D_r \subset \Omega_1^i$$
 and $D_{U_r} \subset \Omega_2^i$ (13)

for all z in some neighborhood of p.

Now fix ε , $0 < \varepsilon < 1/10$. Using (11)–(13), we see that there is an index i, fixed from now on, such that

$$|G_i(z) - Uz| < \varepsilon$$
 whenever $|z| \le 1 - \varepsilon$, (14)

and such that V_i contains a ball of radius 2ε , whose center p satisfies $|p| < 1 - 3\varepsilon$. To see in more detail that this can indeed be done, note that when r_i is sufficiently close to 1, there exists a large set of points $\xi \in S$ such that $|\langle \xi, u_i \rangle| < r_i$ and $|\langle \xi, U^{-1}v_i \rangle| < r_i$. For any such ξ , $D_{\xi} \subset \Omega_1^i$ and $D_{U\xi} \subset \Omega_2^i$, thus $\lambda \xi \in V_i$ if $0 < |\lambda| < 1$

Thus $D_z \subset \Omega_1^i$ if $|z-p| < 2\varepsilon$, and $D_w \subset \Omega_2^i$ if $|w-Up| < 2\varepsilon$. If $|z-p| < \varepsilon$, and $w = G_i(z)$, it follows that $D_w \subset \Omega_2^i$ because

$$|w - Up| \leq |G_i(z) - Uz| + |z - p| < 2\varepsilon. \tag{15}$$

The lemma applies therefore to G_i and shows that G_i is (the restriction of) a unitary operator. Since (8) gives

$$F = \varphi_{b_i} \circ G_i \circ \varphi_{a_i}, \tag{16}$$

the theorem is proved.

REMARKS. (i) Let Ω be a connected open subset of B such that $\overline{\Omega}$ contains an open subset Γ of S. If F is a nonconstant C^1 -map of $\overline{\Omega}$ into \overline{B} that is holomorphic in Ω and carries Γ into S, then $F \in \text{Aut}(B)$. This was proved by Pinčuk [6, p. 381],

who extended an earlier version due to Alexander [1] in which C^{∞} was assumed in place of C^1 .

This Alexander-Pinčuk result is a fairly direct corollary of the present theorem. If $F \in C^1(\overline{\Omega})$ satisfies the Alexander-Pinčuk hypotheses, it is not hard to show (see Fornaess [3, p. 549] or Pinčuk [6, p. 378]) that JF vanishes at no point of Γ . The inverse function theorem implies then that the hypotheses of the present theorem hold.

- (ii) In Alexander's proof [2] that every proper holomorphic map of B into B is in Aut(B) when n > 1, his appeal to Fefferman's theorem can be replaced by the one proved in the present paper. Consequently, there exists now a much more elementary proof of the proper mapping theorem for B.
- (iii) It is quite possible that the present theorem remains true if B is replaced by strictly pseudoconvex domains with real-analytic boundaries (as Pinčuk did in the C¹-case [7]), but an entirely different proof would have to be found; Rosay [8] (strengthening a result of Wong [9]) proved that if some boundary point ξ of a bounded domain $\Omega \subset \mathbb{C}^n$ is a point of strict pseudoconvexity, and if there exist automorphisms T_k of Ω such that $\lim_{k\to\infty} T_k(p) = \xi$ for some $p\in\Omega$, then Ω is biholomorphically equivalent to B.

In other strictly pseudoconvex bounded domains there are thus insufficiently many automorphisms to imitate the proof that works in B.

(iv) If $\xi \in S$ and $\Omega = B \cap \{z : |\xi - z| < 1\}$; in other words, if $\Omega = B \cap (\xi + B)$, then the map $z \to \xi - z$ of Ω onto Ω demonstrates the relevance of the assumptions concerning the location of the points α and β in our theorem.

REFERENCES

- 1. H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249-256.
- , Proper holomorphic mappings in Cⁿ, Indiana Univ. Math. J. 26 (1977), 137-146.
- 3. J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569.
- 4. A. Nagel and W. Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J. 43 (1976), 841–865.
- 5. S. I. Pinčuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 644-649.
- On the analytic continuation of holomorphic mappings, Math. USSR-Sb. 27 (1975), 375–392.
 Analytic continuation of mappings along strictly pseudoconoex hypersurfaces, Soviet Math. Dokl. 18 (1977), 1237–1240.
- 8. J. P. Rosay, Sur une caractérisation de la boule parmi les domaines de C' par son groupe d'automorphismes, Ann. Inst. Fourier 29 (1979), 91-97.
- 9. B. Wong, Characterization of the unit ball in Cⁿ by its automorphism group, Invent. Math. 41 (1977), 253-257.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, MADISON, WISCONSIN 53706