CONVERGENCE OF L_{p} APPROXIMATIONS AS $p \rightarrow \infty$

RICHARD B. DARST

Abstract

Let $(\Omega, \mathcal{Q}, \mu)$ be a probability space and let \mathscr{B} be a subsigma-algebra of \mathcal{Q}. Let $A=L_{\infty}(\Omega, \mathcal{Q}, \mu)$ and let $B=L_{\infty}(\Omega, \mathscr{B}, \mu)$. Let $f \in A$, and for $1<p<\infty$, let f_{p} denote the best L_{p} approximation to f by elements of $L_{p}(\Omega, \mathscr{B}, \mu)$. It is shown that $\lim _{p \rightarrow \infty} f_{p}$ exists a.e. The function f_{∞} defined by $f_{\infty}(x)=\lim _{p \rightarrow \infty} f_{p}(x)$ is a best L_{∞} approximation to f by elements of $B:\left\|f-f_{\infty}\right\|_{\infty}=\inf \left\{\|f-g\|_{\infty}\right.$; $g \in B\}$. Indeed, f_{∞} is a best best L_{∞} approximation to f by elements of B in the sense that for each $E \in \mathscr{B}$ the restriction, $f_{\infty} \mid E$, of f_{∞} to E is a best L_{∞} approximation to the restriction, $f \mid E$, of f to E. Since there is at most one best best L_{∞} approximation to f, f_{∞} is the best best L_{∞} approximation to f by elements of B.

The author wishes to thank the referee for his helpful comments and for pointing out several of the references that discuss similar work. In particular, $\S \S 12.7$ and 12.8 of [5] contain a nice discussion of related work.

We begin with some notation and terminology.
Let $\mathscr{F}=\mathscr{F}(\mathscr{B})$ denote the set of finite partitions of Ω by elements of \mathscr{B} and let $\mathscr{P}=\mathscr{P}(\mathscr{B})$ denote the set of denumerable partitions of Ω by elements of \mathscr{B}.

Let $O(f, E)$ denote the essential oscillation of f on $E \in \mathbb{Q}: O(f, E)=$ $\operatorname{essup}(f, E)-\operatorname{essinf}(f, E)$, where $\operatorname{essup}(f, E)=\operatorname{essinf}(f, E)=0$ if $\mu(E)=0$ and for $\mu(E)>0$,

$$
\begin{aligned}
& \operatorname{essup}(f, E)=\inf \{\lambda ; \mu(\{x \in E ; f(x)>\lambda\})=0\} \quad \text { and } \\
& \operatorname{essinf}(f, E)=\sup \{\lambda ; \mu(\{x \in E ; f(x)<\lambda\})=0\} .
\end{aligned}
$$

Let $d(f, B)$ denote the distance from an element f of A to the subspace B of A.
Before plunging into the technical details, we offer a brief outline. Lemma 1 shows that both \mathscr{F} and \mathscr{P} can be used to estimate $d(f, B)$. Lemma 2 asserts that the added flexibility afforded by \mathscr{P} permits us to replace an inf by a min. The partitions corresponding to each min provide an equivalence class of elements of \mathscr{B}. These equivalence classes comprise a monotone family parametrized by the positive reals. Lemmas 3 and 4 establish technical relationships between f and the elements of these classes. Lemmas 3 and 4 yield the results.

Lemma 1. Let $f \in A$. Then the following inequalities are valid:

$$
\begin{aligned}
d(f, B) & \leqslant(1 / 2) \inf _{\pi \in \mathscr{P}} \sup \{O(f, E) ; E \in \pi, \mu(E)>0\} \\
& \leqslant(1 / 2) \inf _{\pi \in \mathscr{F}} \sup \{O(f, E) ; E \in \pi, \mu(E)>0\} \leqslant d(f, B),
\end{aligned}
$$

so these inequalities are equalities.

Proof. The first two inequalities are clear; to verify the third, let $\varepsilon>0$, let $g \in B$ such that $d(f, g)=\|f-g\|_{\infty}<d(f, B)+\varepsilon / 2$, and let $s=\sum_{i=1}^{n} c_{i} I_{E_{i}}$ be a simple B measurable function (i.e., $\left\{E_{i}\right\}_{i=1}^{n} \in \mathscr{F}$ and I_{E} denotes the indicator function of a set E) such that $d(g, s)<\varepsilon / 2$. Then $d(f, s)<d(f, B)+\varepsilon$, so $\sup \left\{O\left(f, E_{i}\right) ; i \leqslant n, \mu\left(E_{i}\right)>0\right\}<2(d(f, B)+\varepsilon)$.

Henceforth f is a fixed element of A. Without loss of generality we suppose that $0 \leqslant f \leqslant 1$.

Lemma 2. For $h>0$ and $\pi \in \mathscr{P}$, let $\delta(h, \pi)=\delta(f, h, \pi)=\{\Sigma \mu(E) ; E \in \pi$, $O(f, E) \geqslant h\}$ and let $\delta_{h}=\inf \{\delta(h, \pi) ; \pi \in \mathscr{P}\}$. Then there exists π such that $\delta_{h}=\delta(h, \pi)$.

Proof. For $\pi \in \mathscr{P}$, let $\pi^{h}=\{E \in \pi ; O(f, E) \geqslant h\}$, and let $E_{\pi}^{h}=\{\cup E ; E \in$ $\left.\pi^{h}\right\}$. Let π_{k} satisfy $\mu\left(E_{\pi_{k}}^{h}\right)<\delta_{h}+2^{-k}, k \geqslant 1$. Let

$$
\begin{aligned}
& \gamma_{1}=\left\{F_{1 i}=E_{1 i} ; E_{1 i} \in \pi_{1}-\pi_{1}^{h}\right\}, \\
& \gamma_{2}=\left\{F_{2 i}=E_{2 i} \cap E_{\pi_{1}}^{h} ; E_{2 i} \in \pi_{2}-\pi_{2}^{h}\right\}, \\
& \gamma_{3}=\left\{F_{3 i}=E_{3 i} \cap E_{\pi_{1}}^{h} \cap E_{\pi_{2}}^{h} ; E_{3 i} \in \pi_{3}-\pi_{3}^{h}\right\}, \ldots
\end{aligned}
$$

Let $\pi=\left\{F_{k i}\right\} \cup\left\{\Omega-\cup_{k, i} F_{k, i}\right\}$.
Lemmas 1 and 2 assure (i) $\delta_{h}=0$ if $h>2 d(f, B)$ and (ii) if $h<2 d(f, B)$, then there exists $\pi \in \mathscr{P}$ such that $\delta(h, \pi)=\delta_{h}>0$. Notice also that if $\delta(h, \pi)=\delta_{h}$, $E \in \mathscr{B}, E \subset E_{\pi}^{h}$ and $\mu(E)>0$, then $O(f, E) \geqslant h$; thus, E_{π}^{h} is uniquely determined up to a set of measure zero by the equation $\delta(h, \pi)=\delta_{h}$, so we can denote it by $E_{h^{\prime}}$. Now observe that if $h_{1}<h_{2}$, then $\mu\left(E_{h_{2}}-E_{h_{1}}\right)=0$.

For $E \in \mathcal{Q}$, let $m(E)=(1 / 2)\{\operatorname{essup}(f, E)+\operatorname{essinf}(f, E)\}$.
We have two cases to consider at this point: let $h=2 d(f, B)$; then (1) $\delta_{h}=0$ or (2) $\delta_{h}>0$. If $\delta_{h}=0$, then we can get a best approximation b to f in B by putting $b(x)=m(E), x \in E \in \pi \in \mathscr{P}$, where $\delta(h, \pi)=\delta_{h}=0$. On the other hand, suppose that $\delta(h, \pi)=\delta_{h}>0$. Then for $E \in \pi$ with $O(f, E)<h$, define b on E by $b \mid E=m(E)$; it remains to define b on E_{π}^{h}. To this end, let $h_{n}=2 d(f, B)+2^{-n}$, and let $\pi_{n} \in \mathscr{P}$ with $\mu\left(E_{\pi_{n}}^{h_{n}}\right)=0$.

Let $F=\cup\left\{E_{\pi_{n}}^{h_{n}} ; n \geqslant 1\right\}$, let $H=E_{\pi}^{h}-F$, and let $E\left(\left\{i_{j}\right\}_{n}\right)=E_{1, i_{1}} \cap E_{2, i_{2}}$ $\cap \cdots \cap E_{n, i_{n}}$, where $E_{j, i,} \in \pi_{j}$. Next define $f_{n}: H \rightarrow R$ by $f_{n}(x)=m\left(E\left(\left\{i_{j}\right\}_{n}\right)\right)$ if $x \in H \cap E\left(\left\{i_{j}\right\}_{n}\right)$. Now define b on H by $b(x)=\lim _{n} f_{n}(x)$; since $\mu(F)=0, b \in B$ and $d(f, b)=d(f, B)$.

For $1<p<\infty$, let $A_{p}=L_{p}(\Omega, \mathcal{Q}, \mu), B_{p}=L_{p}(\Omega, \mathscr{B}, \mu), d_{p}(g, h)=\|g-h\|_{p} ;$ let f_{p} denote the best L_{p} approximation to f by elements of B_{p}. We shall show that f_{p} converges a.e. as $p \rightarrow \infty$ to a best L_{∞} approximation f_{∞} to f by using the following two technical lemmas.

Lemma 3. Suppose $0<h_{1}, F \in \mathscr{B}, F \subset E_{h_{1}}, \mu(F)>0, h=O(f, F)$. (Then $h_{1} \leqslant h$.) Let $l_{0}=\operatorname{essinf}(f, F), u_{0}=\operatorname{essup}(f, F), \lambda=\left(h-h_{1}\right)+\varepsilon$, where $\varepsilon>0$; let $l=l_{0}+\lambda, u=u_{0}-\lambda, L=\{x \in F ; f(x)<l\}$ and $U=\{x \in F ; f(x) \geqslant u\}$. Let $\alpha>0$. There exists $\beta>0$ such that if $H \in \mathscr{B}, H \subset F$ and $\mu(H) \geqslant \alpha$, then $\mu(H \cap L) \geqslant \beta \mu(H)$ and $\mu(H \cap U) \geqslant \beta \mu(H)$.

Proof. If we establish the first inequality, then the second follows by symmetry. To establish the first, suppose, on the contrary, that we can find sets $E_{k} \in \mathscr{B}$ with $E_{k} \subset F, \mu\left(E_{k}\right) \geqslant \alpha$ and $\mu\left(E_{k} \cap L\right) \leqslant 2^{-k} \mu\left(E_{k}\right)$. Let $E=\lim \sup _{k} E_{k}$. Then $\mu(E) \geqslant$ α. But $\sum \mu\left(E_{k} \cap L\right) \leqslant 1$, so $\mu(E \cap L)=0$ which implies the contradiction $O(f, E)$ $<h_{1}$.

Define \bar{f} by $\bar{f}(x)=\lim \sup _{p \rightarrow \infty} f_{p}(x), x \in \Omega$, and let \underline{f} denote the corresponding lim inf.

Let $0<2 \gamma<h_{1}$, and let $h_{2}=h_{1}+\gamma$. Let $\delta\left(h_{2}, \pi\right)=\delta_{h_{2}}$, where $\pi=\left\{E_{i}\right\} \cup E_{h_{2}}$ and $O\left(f, E_{i}\right)<h_{2}$. Let $F_{i}=E_{i} \cap E_{h_{1}}$.

Lemma 4. $\bar{f}-\underline{f} \leqslant 2 \gamma$ a.e. on $E_{h_{1}}-E_{h_{2}}$.
Proof. Notice that it suffices to show that if $\mu\left(F_{i}\right)>0$ and $\varepsilon>0$, then $\mu\left(\left\{x \in F_{i} ; \bar{f}(x)-f(x) \geqslant 2 \gamma+6 \varepsilon\right\}\right)<\varepsilon$ as follows. Without loss of generality, we simplify the notation by fixing i, letting F denote F_{i}, supposing that $\mu(F)=1$ and letting $\varepsilon>0$ satisfy $2 \gamma+8 \varepsilon<h=u_{0}-l_{0}$ (cf. Lemma 3). Let m be a positive integer with $2^{-m}<\varepsilon$. For $1<p<\infty$, let $G_{p, j}=\left[f_{p} \geqslant(j-1) / 2^{m}\right]-\left[f_{p}>j / 2^{m}\right]$, $1 \leqslant j<2^{m}, G_{p, 2^{m}}=\left[f_{p} \geqslant 1-2^{-m}\right]$ and $H_{p, j}=F \cap G_{p, j}$. Notice that $\Sigma\left\{\mu\left(H_{p, j}\right)\right.$; $\left.\mu\left(H_{p, j}\right)<4^{-m}\right\}<2^{-m}$. Referring to Lemma 3, let β correspond to $\alpha=4^{-m}$. Consider j with $\mu\left(H_{p, j}\right) \geqslant \alpha$. Simplifying the notation again, let H denote $H_{p j}$. Then $O\left(f_{p}, H\right)<\varepsilon$ and according to Lemma 3, the numbers $\mu(H), \mu\left(\left\{x \in H ; f(x) \leqslant l_{0}\right.\right.$ $+\gamma+\varepsilon\})$ and $\mu\left(\left\{x \in H ; f(x) \geqslant u_{0}-\gamma-\varepsilon\right\}\right)$ are balanced, independent of p. Let $m_{0}=(1 / 2)\left(u_{0}+l_{0}\right)$ and observe that for large p if $f_{p}(H)$ were not a subset of [$m_{0}-\gamma-3 \varepsilon, m_{0}+\gamma+3 \varepsilon$], then there would be a better L_{p} approximation to f on H. Thus, $\bar{f}-f \leqslant 2 \gamma$ a.e. on $E_{h_{1}}-E_{h_{2}}$.

Theorem 1. Let $(\Omega, \mathcal{Q}, \mu)$ be a probability space and let \mathscr{B} be a subsigma-algebra of \mathcal{Q}. Let $A=L_{\infty}(\Omega, \mathcal{Q}, \mu)$ and let $B=L_{\infty}(\Omega, \mathscr{B}, \mu)$. Let $f \in A$, and for $1<p<$ ∞, let f_{p} denote the best L_{p} approximation to f by elements of $L_{p}(\Omega, \mathscr{B}, \mu)$. Then $\lim _{p \rightarrow \infty} f_{p}$ exists a.e.; moreover, the function f_{∞} is a best L_{∞} approximation to f by elements of B.

Proof. Let $0<\varepsilon<4^{-1}$; let $h_{1}=\varepsilon$ and let $h_{n+1}=h_{n}+\varepsilon / 4, n>1$. Then Lemma 4 asserts that $\bar{f}-f \leqslant \varepsilon / 2$ a.e. on E_{ε}. Let $\varepsilon \rightarrow 0$ and recalling that $f_{p}=f$ on $\Omega-U_{n} E_{1 / n}$, we have that f_{p} converges a.e. to a function f_{∞}. It is clear that f_{∞} is a best L_{∞} approximation to f.

Not only is f_{∞} a best L_{∞} approximation to f by elements of B on Ω, but for each set E in \mathscr{B}, the restrictions to E of the functions considered above maintain their relationships: $f_{p}\left|E \rightarrow f_{\infty}\right| E$ a.e. and $f_{\infty} \mid E$ is a best L_{∞} approximation to $f \mid E$ by elements of $B \mid E$. We verify that this latter relationship characterizes f_{∞} below.

Lemma 5. If each of g and u is a best L_{∞} approximation to f by elements of B and for each $E \in \mathscr{B}$ each of $g \mid E$ and $u \mid E$ is a best L_{∞} approximation to $f \mid E$ by elements of $B \mid E$, then $d(g, u)=0$.

Proof. Let $h>0$ and $0<\varepsilon<h / 8$. It suffices to show that $|g-u|<4 \varepsilon$ a.e. on $E_{h}-E_{h+\varepsilon}$ as follows. Suppose $E \subset\left(E_{h}-E_{h+\varepsilon}\right)$ with $\mu(E)>0, O(g, E)<\varepsilon$,
$O(u, E)<\varepsilon$ and $O(f, E) \leqslant h+\varepsilon$. Since each of $g \mid E$ and $u \mid E$ is a best L_{∞} approximation of $f \mid E$, refer to Lemma 3 and find out that $|g-u|<4 \varepsilon$ a.e. on E. Then, refer to the proof of Lemma 4 and infer the desideratum.

Lemma 5 and the paragraph that precedes it combine with the following definition to characterize f_{∞}.

Definition. Let $f \in A$. Then $g \in B$ is said to be a best best L_{∞} approximation to f by elements of B if for each $E \in \mathscr{B}$, the restriction, $g \mid E$, of g to E is a best L_{∞} approximation to the restriction, $f \mid E$, of f to E.

Theorem 2. Let $f \in A$. Then f_{∞} is the unique (up to a set of measure zero) best best L_{∞} approximation to f by elements of B.

References

1. C. K. Chui, P. W. Smith and J. D. Ward, Favard's solution is the limit of $W^{\boldsymbol{k} \boldsymbol{\rho}}$-splines, Trans. Amer. Math. Soc. 220 (1976), 299-305.
2. Jean Descloux, Approximations in L^{p} and Chebyshev approximations, J. Soc. Indust. Appl. Math. 11 (1963), 1017-1026.
3. L. A. Karlovitz, Construction of nearest points in the L^{p}, p even and L^{∞} norms. I, J. Approximation Theory 3 (1970), 123-127.
4. G. Polya, Sur un algorithme toujours convergent pour obtenir les polynomes de meilleure approximation de Tchebycheff pour une fonction continue quelconque, Compt. Rend. 157 (1913), 480-483.
5. J. R. Rice, The approximation of functions. II, Addison-Wesley, Reading, Mass., 1969.
6. V. A. Ubhaya, Isotone optimization. II, J. Approximation Theory 12 (1974), 315-331.

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523

