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CONVERGENCE OF Lp APPROXIMATIONS AS/> -» oo

RICHARD B. DARST

Abstract. Let ($2, a\ ji) be a probability space and let ® be a subsigma-algebra of

&.LetA = LX(Q, &, u) and let B = LX(Q, <$>, ft). Let/ e ^, and for 1 <p < oo,

letjfp denote the best Lp approximation to/by elements of Lp(ü, ®, /»). It is shown

that lim,...,» fp exists a.e. The function fx defined by /„(x) = ^mp_x fp(x) is a

best /.„ approximation to / by elements of B: \\f - fx\\x = inf{||/- g||„,;

g e B}. Indeed,/„ is a best best Lx approximation to/by elements of B in the

sense that for each E e ® the restriction, /«,!£, of /«, to £ is a best /.„

approximation to the restriction, f\E, of / to E. Since there is at most one best best

Lx approximation to/,/,, is the best best ¿^ approximation to/by elements of B.

The author wishes to thank the referee for his helpful comments and for pointing

out several of the references that discuss similar work. In particular, §§12.7 and

12.8 of [5] contain a nice discussion of related work.

We begin with some notation and terminology.

Let ^ = ^CSi ) denote the set of finite partitions of ß by elements of ® and let

ÍP = 9 (% ) denote the set of denumerable partitions of ß by elements of ©.

Let 0(f, E) denote the essential oscillation of / on E G â: 0(f,E) =

essup(/, E) - essinf(/, E), where essup(/, E) = essinf(/, E) = 0 if ¡i(E) = 0 and

for u(F) > 0,

essup(/, E) = inf{A; u({x G E;fix) > X}) = 0}    and

essinf(/, E) = sup{X; u({x G E;f(x) < X}) = 0}.

Let d(f, B) denote the distance from an element/ of A to the subspace B of A.

Before plunging into the technical details, we offer a brief outline. Lemma 1

shows that both $F and <? can be used to estimate d(f, B). Lemma 2 asserts that the

added flexibility afforded by 9 permits us to replace an inf by a min. The

partitions corresponding to each min provide an equivalence class of elements of

®. These equivalence classes comprise a monotone family parametrized by the

positive reals. Lemmas 3 and 4 establish technical relationships between / and the

elements of these classes. Lemmas 3 and 4 yield the results.

Lemma 1. Let f G A. Then the following inequalities are valid:

d(f, B) < (1/2) inf sup{0(/, E); E G tr, ¡x(E) > 0}

< (1/2) inf sup{0(/, E); E G *, u(F) > 0} < d(f, B),

so these inequalities are equalities.
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Proof. The first two inequalities are clear; to verify the third, let e > 0, let

g G B such that d(f, g) = ||/ - g|]„ < d(f, B) + e/2, and let í = Z^.c,/^ be a

simple B measurable function (i.e., (F,}"_, G ÍF and IE denotes the indicator

function of a set E) such that d( g, s) < e/2. Then d(f, s) < d(f B) + e, so

sup{0(/, F,); i < ft, u(F,) > 0} < 2(a-(/, B) + e).

Henceforth / is a fixed element of A. Without loss of generality we suppose that

0</< 1.

Lemma 2. For h > 0 and it G 9, let S(h, -it) = 8(f h, it) = {2 u(F); F G ir,

0(f, E) > h} and let Sh = inf{S(h, it); it G 9}. Then there exists m such that

Sh = S(h, it).

Proof. Fortr£?, let irh = {E G tt; 0(/, F) > «}, and let F¿ = { U F; F G

wA}. Let 77* satisfy u(F*t) < ÔA + 2"*, /t > 1. Let

ri - {/■„ - Eu; E u e », - »*},

Y2 = {^2, = «a n ^*; F2l. g tt2 - w2*},

y3 = { F3/ = F3/ n E* n F„*2; F3(. G tt3 - tt3a }, . . . .

Let^={F„.}u{ß- U*,F*,}.

Lemmas 1 and 2 assure (i) SA = 0 if h > 2d(fi B) and (ii) if « < 2a"(/, B), then

there exists it G ?P such that S(n, w) = 5A > 0. Notice also that if S(h, it) = Sh,

E C%, E cEk and u(F) > 0, then 0(f, E) > h; thus, F* is uniquely de-

termined up to a set of measure zero by the equation S(h, tr) = Sh, so we can

denote it by Eh. Now observe that if n, < «2, then fi(Eh — Eh ) = 0.

For E C&, let m(F) = (l/2){essup(/, E) + essinf(/, F)}.'

We have two cases to consider at this point: let h = 2a"(/, B); then (1) Sh = 0 or

(2) 8h > 0. If 6h = 0, then we can get a best approximation b to / in B by putting

b(x) = m(E), x G E G it G <3>, where S(A, w) = ¿>, = 0. On the other hand, sup-

pose that S(h, tr) = Sh > 0. Then for F G it with 0(f, E) < h, define b on F by

¿>|F = m(E); it remains to define ¿> on F*. To this end, let /i„ = 2a"(/, fi) + 2"",

and let w„ G <3> with jn(F^) = 0.

Let F = U (F£; ft > 1}, let H = Ek - F, and let F({t,}„) = F,,,, n Eu,

D ■ • • n£„v where F^ G wr Next define/,: //^Ä by fn(x) = ftt(F({/,}„)) if

x C H n E({ij}„). Now define ¿> on H by Z>(x) = limj^.*); since u(F) = 0, b G B

and a-(/, b) = </(/, 5).

For Kp < oo, let A, = L,(ß, ft, u), 5„ = L,(ß, ®, u), 4aS> A) = II* - A||,;
let/, denote the best Lp approximation to/by elements of Bp. We shall show that/,

converges a.e. as/> —> oo to a best L^, approximation fx to/by using the following

two technical lemmas.

Lemma 3. Suppose 0 < n„ F G %, F c Eh¡, ¡i(F) > 0, h = 0(/, F). (77w?ft

/i, < A.) Le/ /0 = essinf(/, F), i/0 = essup(/, F), X = (h — hx) + e, where e > 0; /e/

/ = /„ + A, u = m0 - X, L = {x G F; fix) < 1} and U = {x G F; /(x) > «}. LeV

a > 0. Fftfcve exists ß > 0 smcA fnaf if H C- <3>, H c F and p.(H) > a, then

H(H n L)> ßn(H) and p.(H n U) > ßfi(H).
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Proof. If we establish the first inequality, then the second follows by symmetry.

To establish the first, suppose, on the contrary, that we can find sets Ek G <3J with

Ek c F, n(Ek) > a and ¡i(Ek n L) < 2~k¡i(Ek). Let F = lim supkEk. Then u(F) >

a. But S fi(Ek n L) < 1, so u(F n L) = 0 which implies the contradiction 0(/, F)

Define / by/(x) = lim supp^,xfp(x), x G ß, and let/ denote the corresponding

lim inf.

Let 0 < 2y < hx, and let h2 = hx + y. Let 8(h2, it) = 8h, where it = {E,} u FA

and 0(/, F,) < «2. Let F, = F, n FAi.

Lemma 4. / — / < 2y a.e. on FA  — Eh .

Proof. Notice that it suffices to show that if w(F,) > 0 and e > 0, then

H({x G F¡; fix) - fix) > 2y + 6e}) < e as follows. Without loss of generality, we

simplify the notation by fixing i, letting F denote F,, supposing that u(F) = 1 and

letting e > 0 satisfy 2y + Se < h = u0 — l0 (cf. Lemma 3). Let m be a positive

integer with 2"1 < e. For K p < oo, let Gw - [fp > (j - \)/2m] - [fp >j/2m],

\<j< 2* Gpar - [fp > 1 - 2-] and ^ = F n G„. Notice that 2{/i(^);
/i(flp^) < 4"""} < 2~m. Referring to Lemma 3, let ß correspond to a = 4~m. Con-

sider / with n(Hpj) > a. Simplifying the notation again, let H denote HpJ. Then

0(fp, H) < e and according to Lemma 3, the numbers fi(H), n({x G H; fix) < l0

+ y + e}) and (i({x G H; fix) > u0 — y — e}) are balanced, independent of p.

Let fti0 = (l/2)(w0 + /„) and observe that for large/? if fp(H) were not a subset of

[fti0 - y - 3e, m0 + y + 3e], then there would be a better Lp approximation to /

on H. Thus, / — / < 2y a.e. on Eh  — Eh .

Theorem 1. Let (ß, &, ¡i) be a probability space and let % be a subsigma-algebra

of &. Let A = LM(ß, â, ¡j.) and let B = ¿M(ñ, S, ¡i). Let f G A, and for 1 <p <

oo, let f denote the best Lp approximation to f by elements of Lp(Q,, ©, ¡i). Then

\imp^,xfp exists a.e.; moreover, the function fx is a best Lx approximation to f by

elements of B.

Proof. Let 0 < e < 4"1; let hx = e and let hn+x = «„ + e/4, n > 1. Then

Lemma 4 asserts that/ — / < e/2 a.e. on Ee. Let e —► 0 and recalling that/, = / on

ß — U„Ex/n, we have that/, converges a.e. to a function/œ. It is clear that/^ is a

best LM approximation to/.

Not only isfx a best Lx approximation to/by elements of B on ß, but for each

set F in <&, the restrictions to F of the functions considered above maintain their

relationships: fp\E -> fx\E a.e. and /W|F is a best LM approximation to/|F by

elements of B\E. We verify that this latter relationship characterizes fx below.

Lemma 5. If each of g and u is a best LM approximation to f by elements of B and

for each E G 'S each of g\E and u\E is a best Lx approximation to f\E by elements

of B\E, then d(g, u) - 0.

Proof. Let h > 0 and 0 < e < /i/8. It suffices to show that \g — u\ < 4e a.e. on

Eh - Eh+e as follows. Suppose F c (Eh — Eh+e) with ¡i(E) > 0,  0(g, E) < e,
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0(u, F) < e and 0(f, E) < h + e. Since each of g|F and w|F is a best Lx

approximation of/|F, refer to Lemma 3 and find out that | g — u\ < 4e a.e. on E.

Then, refer to the proof of Lemma 4 and infer the desideratum.

Lemma 5 and the paragraph that precedes it combine with the following

definition to characterize fx.

Definition. Let/ G A. Then g G B is said to be a best best LOT approximation

to/ by elements of B if for each F G ÍB, the restriction, g\E, of g to F is a best Lx

approximation to the restriction,/|F, of/to F.

Theorem 2. Let f G A. Then fx is the unique (up to a set of measure zero) best

best Lx approximation to f by elements of B.
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