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TOTAL STABILITY FOR NEUTRAL FUNCTIONAL

DIFFERENTIAL EQUATIONS

A. F. IZÉ AND A. A. FREIRIA1

Abstract. The basic idea of this work is to use Lyapunov functionals to show that

for neutral functional differential equations, uniform asymptotic stability implies

total stability.

1. Introduction. In discussing the existence of almost periodic solutions of

retarded functional differential equations connecting with boundedness, there are

two ways. The one is to assume a separation condition for bounded solutions and

the other is to assume that an almost periodic system has a bounded solution with

some kind of stability properties, uniform asymptotic stability, total stability and so

on. In particular, the existence of a bounded totally stable solution implies the

existence of an almost periodic solution; but even that the equation satisfies a local

uniform Lipschitz condition, the existence of a uniformly asymptotically stable

solution, does not imply the existence of an almost periodic solution [4]. For

neutral equations, the above relationship between the existence of almost periodic

solutions and some kind of stability is not well understood yet. It seems to be

reasonable that if the operator D is not stable in the sense defined in [1], then the

results obtained for retarded equations can be extended to neutral equations. We

analyse in the following the relationship between uniform asymptotic stability and

total stability and show that if the equations satisfy a uniform Lipschitz condition

and the D operator is stable then uniform asymptotic stability implies total

stability.

2. Preliminary. Suppose r > 0 is a given real number, R = (-oo, oo), E" is a real

or complex «-dimensional linear vector space with norm | • |, C = C([-r, 0], E") is

the Banach space of continuous functions mapping the interval [-/-, 0] into E" with

the topology of uniform convergence given by the norm ||<i>|| = sup_r<9<o|<f>(0)|. If

0 G R, A > 0 and x G C([o - r, a + A], E") then for any t G [o, a + A] we let

x, G C be defined by xt(9) = x(t + 9), -r < 9 < 0. If ß is an open subset of

R X C and/, D: ß —> E" are given continuous functions we say that the relation

^ £(/,*,)=/(/,*,) (1)

is a functional differential equation.
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We say that (1) is a neutral functional differential equation if D is linear in <f>,

D(t, <b) = <b(0) - g(t, <#>), where g(t, <f>) = f°_rdn(t, Oyp(0), p. is an n X n matrix

function of bounded variation for 0 G [-r, 0] and there is a continuous scalar

function l(s) strictly increasing, 1(0) = 0 such that

|f°[a>(',0)]<í>(0) </(*)   sup   |<K0)|,       tGR. (2)
\J-s -s<9<0

If / takes bounded sets of R X C into bounded sets we have continuous

dependence of solutions, continuity and continuation of solutions to a maximal

interval of existence of (1) [2].

3. Main results. Consider the system of functional differential equations of

neutral type

— D(t,Xl)=f(t,x,),       xa = <b, (3)

and the perturbed system

d
J(D(t,y,)=fit,yl) + h(t,yt) (4)

where D: [t, oo) X C -> E" (En = R" or C) is linear continuous and /, «:

[t, oo ) X C -> E" are continuous and take bounded sets ofüxC into bounded

sets. We assume also that/and « satisfy a Lipschitz condition with respect to <b in a

neighborhood of the origin uniformly in t for t in bounded sets fit, 0) = 0,

h(t, 0) = 0. Under these conditions, systems (3) and (4) have a unique solution

x,(o, <¡>), xa(a, <b) = <t> through (o, <j>).

Definition 1. The zero solution of (1) is uniformly stable if for each e > 0 there

is 5 = ô(e) > 0 such that ||r>|| < 8 implies that \\xt(o, <f>)|| < e for every t > a > 0.

The zero solution of (1) is uniformly asymptotically stable if it is uniformly stable

and there is 8 > 0 and for any tj > 0 there exists T = T(r¡) such that ||d>|| < 8

implies \x,(o, *)| < tj for t > a + F(tj).

Definition 2. We say that the operator D is uniformly stable if there exist

constants k > 0, M > 0 such that the solution x(o, ¿>, H) of D(t, x,) = D(o, <b) +

H(t) - H(o); t>o,x„ = <b satisfies

\\x,(o, <t>, H)\\ < ¿11*11 + sup   \H(fi) - H(o)\, t > a,        [1].

In what follows we assume that D is a uniformly stable operator. We will need

the following lemma.

Lemma. Assume that fit, *) satisfies a Lipschitz condition with respect to <j> in a

neighborhood of the origin uniformly for t > o and fit, 0) = 0. If x,(o, <¡>) andy,(o, xp)

are solutions of (I) then there exist constants k0 > 0, Lx > 0 such that

ik(°% *) - v,(o-, *)n < rvi,('_,,)ii* - n>   ' > °-
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Proof. Let x(t) and y(t) be solutions of (1) with initial conditions <¡> and *

respectively; then

|*(') - y(')\

*(0) - *(0) + g(a, (* - *)) + g(t, x, - y,) + f'[f(s, xs) - f(s,ys)]ds
Ja

Then there are constants L and a > 0 such that |x(i) — v(f)| < L||* — </'ll/2 +

||jc, — y,\\/2, for a < r < a + a. Since we can take L > 1 it is easy to see that

||x, - yt\\ < L||* - *||/2 - \\x, - v,||/2 and then ||x, - v,|| < L||* - *||. By

iterating this inequality a number of times we have for / G [o + (n — l)a, a + na]

and t G [o, o + t]

||xXa,<í»)-v,(a,»íO||<Ln||«í>-#

Let us show that there exist positive constants k0 and L, such that

L"||* - *|| < VL,('"o)||«í> - *||,        o<t <r.

We have to show that there exist k0 > 0, Lx > 0, independent of «, such that

&0e£,l("~1)a > L" or log /c0 + Lx(n — \)a > « log L. We choose k0 in such a way

that log kQ < Lxa; then Lxa + Lx(n — \)a > n log L and Lx > (log L)/a satisfies

the lemma. Hence ||x, - y,\\ < k0eL'(-'~'')\\^ - uV||, a < / < oo.

If F: [t, oo) X C —» /? is a continuous function we define the derivative V(t, <j>)

of V along the solutions of (1) by

1
V{t, <b) = Vw(t, <t>) =    lim   - [ F(f + «, x,+A(/, *)) - F(/, </»)].

The following theorem is a corollary of Theorem 1 of [3].

Theorem 1. If the zero solution of (3) is uniformly asymptotically stable then there

are constants 80 > 0, k = k(80) > 0, M > 0 and continuous nondecreasing, positive

definite functions u(s), c(s), b(s), w(s), v(s), for 0 < s < 80, u(0) = c(0) = b(0) =

w(0) = ü(0) = 0 and a Lyapunov functional V: [o, oo) X C —» /?", jwc/i i/tar

(i) «(|Z)(/, *)|) < V(t, <b),

(ii) c(||«i»||) < V(t, *) < é(||*||),

(iii) Vw(t, *) < K(3)(f, *) + M\h(t, *)|,

(iv) F(/, *) < - v(\D(t, *)|), F(i, *) < -w(||*||),

(v) | V(t, *) - V(t, *)| < ¿||* - *||, / > a, *, * G C([-r, 0], E"), ||*||, ||*|| < 80.

Proof. The existence of V satisfying conditions (i), (ii), (iv) and (v) is shown in

[3, Theorem 1] by virtue of Lemma 1 and condition (2). The derivative of V along

the solutions of (4) is

Vw(t, *) < V(3)(t, *) +     _ \h(t, *)|
1      '\so)

= V(3)(t, *) + M\h(t, *)|,        f > 0, ||*|| < Ô,

where / is the function defined in condition (2) with s0 small enough in such a way

that 0 < l(s0) < 1, and k > 0 is the constant in condition (v) that proves (iii).
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4. Total stability.

Definition 3. The solution x = 0 of (3) is totally stable if for every e > 0 there

exists 7),(e) > 0, r¡2(e) > 0 such that ||*|| < 17, and \h(t, *)| < t/2 implies that

||>>,(o-, *)|| < e, t > o, where y,(o, *) is a solution of (4).

Theorem 2. If the solution x = 0 of (3) is uniformly asymptotically stable it is

totally stable.

Proof. Assume that there is a /, > a such that \\y, (o, *)|| > e. Choose tj, > 0,

/ > 0 such that b(rix) < / < c(e/2) where b and c are functions in (ii) in Theorem

1; then

V(tx, ylt(o, *)) > c\\yii(a, *)|| > c(e) > c(e/2) > I,

V(o,ya(o, $)) < b(\\<t>\\) < b(Vx) < I.

Since V(t, *) is continuous there exists t2, o < t2 < tx, such that V(t2, y, (a, *)) = /

and    V(t, y,(a, *)) > I   for   t > i2.   Hence   b(\\yh(a, *)||) > V(t2, v,/<x, *)) >

c(\\yH(o, *)||).

If ^ = >,2(o-, *) we have ¿>(||*||) > / > c(||*||) and ¿(tj,) < / < c(e/2) which

implies that tj, < ||*|| < e. From the inequalities (iii) and (iv) in Theorem 1 and

choosing 7)2 < w(t)x)/ M we have

r(4)(*2, *) < -w(||*||) + Mt>2 < 0; (5)

we have also that

1
Vw{t2, *) =   hm+ - [ V(t2 + h,yh+h(t2, *)) - V(t2, *)] > 0.

Since V(t2,y,2(o, *)) = V(t2, *) = / and V(t,yt(o, *)) > I for t > t2 this is a con-

tradiction. Then ||.y,(o-> *)|| < e for t > o and the proof is complete.

Example 1. If a > 0 and |c| < 1, the solution x = 0 of the equation

— [x(t)+ cx(t-r)] =-ax(t) (6)

is totally stable.

Proof. Since |c| < 1 it is well known [2] that the operator D(<j>) = *(0) + c*(-r)

is uniformly stable. It is proved in [1, Example 6.1] that the solution x = 0 of (6) is

uniformly asymptotically stable and from Theorem 2 it is totally stable.

Example 2. The transmission line without loss with two differential elements in

the terminals [5a], gives rise to a system of second order equations

Cx^D(t, x,) = --x(t) -S-x(t-r)- g(D(t, x,)) - i(t),
ai z z

Lxj-ti(t) = -Rxi{t) + D(t,x,) (7)

where C,, Lx, Kx, Rx, z are positive constants. If \q\ < 1, D(t, *) = *(0) — a*(-r) is

uniformly stable and if there exists H such that

inf   i^L=M>Al-M
\x\>H    x z I + \q\'

then the system above is totally stable.
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Proof. We consider the operator

#(*,/) = (VC¡ (*(0) - <?*(-/-)), VZ7/) = (Ve, Z>*, VI,/).

Define

V(<b,j) = ±[D(<t>,j)]2 + ßfj2(9) dß

where ß = |a|/z. Since ¿\D(<b,j)\2 = (Cx/2)(D<b)2 + (Lx/2)j2 we have

V(<?J) = (C,/2)(Z>*)2 + (L,/2)/2 + ß(\2(9) dB.
J -r

If (x,, /(f)) is a solution of (7) then

V(x„ i(t)) < F - *,,*(/)

where

F = (Z>*,)(-l/z • x(f) - q/z ■ x(t - r))

+ ßx2(t) - ßx2(t -r)- (g(Dxt)/Dx,)(Dx,)2,

choose y such that M > y, y > (-l/z)(l - \q\)/0 + kl)-

Adding and subtracting y(Dx,)2 in V(xt, i(t)) we obtain

V(xt, /(/)) < Q - (Dx,)2(g(Dx,)/ (Dx,) - y) - Rxi2(t),

Q = (Dxt)(-\/z ■ x(t) - q/z ■ x(t - r)) + ßx2(t) - ßx2(t - r) - y(Dx,)2.

Q is a negative definite quadratic form on x(t) and x(t — r); then

V(x„ i(t)) < -(Dx,)2(g(Dx,)/(Dxl) - y) - Rxi2(t).

For \Dxt\ > H from the hypotheses on g we have

V(x„ i(t)) < - (Dx,)2(M -y)- Rxi2(t)

< -a(Dx,)2 - Rxi2(t)

where a = M - y > 0. Now we seek y4 such that

-a(Dx,)2 - Rxi2(t) < A\D(x„ i(t))\2

for every Dx„ i(t). If ^ = a/2Cx < Rx/Lx this condition is satisfied then

V(xt, i(t)) < -/l|Z)(.x„ i(t))\2 and the solution x = 0 of (3) is uniformly asymptoti-

cally stable and from Theorem 2 is totally stable.
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