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NOT EVERY ¿-SYMMETRIC OPERATOR IS GCR

C. RAY ROSENTRATER1

Abstract. Let T be an element of ® (%), the algebra of bounded linear operators

on the Hubert space %. The derivation induced by T is the map S^X) — TX —

XT from ® (%) into itself. T is d-symmetric if the norm closure of the range of ST,

3t(5r) > is closed under taking adjoints. This paper answers the question of whether

every ¿-symmetric operator is GCR by giving an example of an NGCR weighted

shift that is also (/-symmetric.

Let % be a complex Hubert space and T an element of *$>(%), the algebra of

bounded linear operators from % into DC. The derivation induced by T is the

mapping 8T(X) = TX - XT from © (%) into itself. T is said to be d-symmetric if

the norm closure of the range of 8T, 9l(5r)~, is closed under taking adjoints.

Examples of ¿/-symmetric operators include the normal operators and isometries.

In [ABDW] it is proved that a necessary and sufficient condition for T to be

¿-symmetric is that TT* - T*T G 6(T) where G(T) = {C G <$>(%): C<&(%)+

C$>(%)C C ^(Sj.)'). In the same paper the question is raised whether every

¿-symmetric operator is GCR. This paper answers that question in the negative by

giving an example of a weighted shift Te, = a¡ei+x, i G Z, that is both ¿-symmetric

and NGCR. Recall that an operator T is GCR if every irreducible representation

of C*(T), the C*-algebra generated by T and the identity operator, contains the

compact operators. T is NGCR if C*(T) contains no GCR two sided ideal [A]. If T

is irreducible then T is NGCR if and only if C*(T) contains no nonzero compact

operator [A].

Lemma. Let V be similar to T, say SVS~l = T. Then T is d-symmetric if and only

if S~\TT* - T*T)S G ß(V).

Proof. S^SXS-1) = SVXS1 - SXVS~l = S8y(X)S-\ Hence «31(0»" =

S^Sy^S-1 and it follows that G(V) = S'le(T)S. Thus C = TT* - T*T G

Q(T) if and only if S'lCS G Q(V). The lemma now follows from the result quoted

above.   □

We now restrict our attention to weighted shifts. Recall that two bilateral shifts

Ve¡ = a¡ei+x and Tf¡ = ßji+x are similar if and only if there exist integer k and

constant C so that 1/C < \(akak+x ■ • • a.k+n)/(ßQßx ■ • • /J„)| < C uniformly for
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ail « G Z (see [S]). If we define T0e¡ = ßi_kei+x then T0 is unitarily equivalent to

T, T0 is similar to V, and the similarity can be implemented by an operator that is

diagonal with respect to {en) (see [S]). The same results are true in the unilateral

case with k = 0, n G N. This leads to the following.

Corollary. Let V and T be similar (unilateral or bilateral) weighted shifts. Then

T is d-symmetric if and only if T0T* — T*T0 G &(V).

Proof. Since ¿-symmetry is clearly preserved under unitary equivalence, T is

¿-symmetric if and only if T0 is ¿-symmetric. T0 is similar to V by means of a

diagonal operator D. T0T* — T*T0 is diagonal with respect to the same basis so

D\T0T* - T*T0)D = T0T* - T*T0.    Q
Remark. If S is an invertible operator that commutes with C, then it is not hard

to show that C ë 6(7) if and only if CS G G(T). In particular, if C = T0T* -

T*T0 is a diagonal operator as in the corollary, then C G Q(T) if and only if |C|,

the diagonal with diagonal entries the modulus of the corresponding entry in C, is

in Q(T). (It is not true in general that \C\ G Q(T) implies C G 6(T).)

In [ABDW] it is shown that when T is ¿-symmetric, &(T) is the linear span of

the positive elements in <3l (8T)~. This implies the following.

Proposition. // V is a d-symmetric weighted shift and T is a weighted shift similar

to V, then T is d-symmetric if and only if | T0T* - T*T0\ e. <Sl(8vy.

Before we proceed to the example, we need to state a result due to O'Donovan.

In [O] he proves that a bilateral shift with nonzero weights {w(i)} is NGCR if and

only if there exists a sequence nk -» oo, such that w(i + nk) -» w(i) for i G Z.

Example. Let T be the bilateral weighted shift with weights defined by

'(0 =

1, / < 0,

l Í-1.
2, i = 2,
1, 3* < i < 2 ■ 3k,

w(i-2-3k), 2-3k <i<3k+l.

Claim I. T is NGCR.

Proof. Let nk = 2-3*. Fix / < 0. Then for k > 1 so that 3* > |/'|, w(i + nk) =

w(2 ■ 3k - \i\) = 1 = w(i).

Fix i > 0. Then for k so that 3* > i we have 2 • 3* < /' + 2 • 3* < 3*+1 so

w(i + nk) = w(i + 2 • 3*) = w(i). In any case we have w(i + nk) —» w(i).   □

Claim II. Tis similar to the bilateral shift Ven = en+x and T0 = T.

Proof. An induction argument shows that if w(k) = 2 then w(k — 1) = \ and if

w(k) = \ then w(k + 1) = 2. Since all other weights are 1 it follows that

£<|w(0)-w(l).w(n)\ < 2    for n G Z.   □
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Matrix computations show that D = \ TT* — T* T\ is the diagonal operator with

the weights

¿(0 =

o,
2
4'

\5
4 '

i < 0,

'= 1,

i = 2,

3, i = 3,

0, 3* < i < 2 • 3*,

rf(i-2-3*),    2-3* </ < 3*+1.

In order to show T is ¿-symmetric it is enough to show that D = \TT* — T*T\ G

•31 (8y)~ by the proposition. As

we will be done if we show 3-*||2jl j FW*i ->■ 0 as A: -> oo.

Since conjugation by V shifts a diagonal operator one position down the

diagonal, ^"-XVJDV*J is also a diagonal operator and its weights are d'(i) =

2J_,¿(/' - j) = 2"=1¿(/ - « + /). Thus it suffices to show that

1
2 d(i + j) —> 0   uniformly in /" as k —» oo.

3  7= i

Claim III. 2jl,¿(/) < 8 • 2*.
Proof. If A - 1, then 2j_,¿(/) = 15/2 < 8. Assuming 2jl,¿0) < 8 ■ 2* we see

that

3*+ ' 3* 2-3* 3* +1

2 d(j) = 2 d(j) +   2  ¿0) +    2   ¿t/)
/-l 7-1 7 = 3* +1 7-2-3* +1

3*

= 22¿0")<8-2*+1.   □
/~i

Claim IV. 2j'_ ,¿(/ + /) < 8 • 2' for all / G Z.

Proof. Suppose that -oo < i < 3'. Since ¿(j) = 0 for/ < 0 and 3' </ < 2 • 3',

3' 3'+/ 2-3'

2¿(<+/) = 2 ¿C/)< 2*0)
7 = 1 7 = 1+1 7-1

= 2 4/) < » • 2'
/-i

by Claim III.

Let /t > / and assume that 2j'_,¿(i + /) < 8 • 2l for i < 3*. Let 3* < i < 3

and consider

3' 1 + 3'

2*+»-  2 «CO-
7=1 7-/+1

*+l
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If / + 3' < 2 • 3* then the sum is zero since d(j) = 0 for 3* <j < 2 ■ 3k. For the

same reason we can assume that the lower limit on the sum is at least 2 • 3*. Since

d(j) = 0 for 3*+1 <j < 3*+1 + 3' < 2 • 3*+1, we can also assume that the upper

limit is at most 3* + I. Hence 2,_?+1¿(/) = 27_B + 1¿(/) with 2 • 3* < n < m < 3*+1

and m — n < 3'. Let m' = m — 2 ■ 3k and n' = n — 2 • 3k; then we see that

m m' rt' + 3'

2    </)-     2    d(j)<     2    d(j)< 8 -2'
j=n+ 1 y —/i'+l _/'=n'+l

since «' < 3*+l - 2 • 3* = 3*. Hence

3'

2 d(i + j) < 8 • 2'   for i < 3*+1.    □
y-i

Thus we have shown that T is both NGCR and ¿-symmetric.
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